ATR是给定时间段内True Range的平均值。真实范围是(高-低),这意味着我已经使用以下方法进行了计算:

df['High'].subtract(df['Low']).rolling(distance).mean()

但是,如果需要很短的时间(或上述示例中的“距离”),则ATR可能会非常跳动,即某些数字之间会出现较大的零星间隙。

实际的ATR公式可以识别此问题,并通过执行以下操作使其平滑:
Current ATR = [(Prior ATR x 13) + Current TR] / 14

但是我不确定如何以与上面相同的方式执行此操作,即列宽操作。

我原始方法中的样本数据包括TR和ATR(10):
Date        Time            Open    High    Low     Close   TR      ATR
30/09/16    14:45:00+00:00  1.1216  1.1221  1.1208  1.1209  0.0013  0.0013
30/09/16    15:00:00+00:00  1.1209  1.1211  1.1203  1.1205  0.0008  0.0013
30/09/16    15:15:00+00:00  1.1205  1.1216  1.1204  1.1216  0.0012  0.0013
30/09/16    15:30:00+00:00  1.1217  1.1222  1.1213  1.1216  0.0008  0.0013
30/09/16    15:45:00+00:00  1.1216  1.1240  1.1216  1.1240  0.0025  0.0015
30/09/16    16:00:00+00:00  1.1239  1.1246  1.1228  1.1242  0.0019  0.0015
30/09/16    16:15:00+00:00  1.1242  1.1251  1.1235  1.1240  0.0016  0.0016
30/09/16    16:30:00+00:00  1.1240  1.1240  1.1234  1.1236  0.0007  0.0014
30/09/16    16:45:00+00:00  1.1237  1.1245  1.1235  1.1238  0.0009  0.0012
30/09/16    17:00:00+00:00  1.1238  1.1239  1.1231  1.1233  0.0008  0.0012
30/09/16    17:15:00+00:00  1.1233  1.1245  1.1232  1.1240  0.0013  0.0012
30/09/16    17:30:00+00:00  1.1240  1.1242  1.1228  1.1230  0.0013  0.0013
30/09/16    17:45:00+00:00  1.1230  1.1230  1.1221  1.1227  0.0009  0.0013
30/09/16    18:00:00+00:00  1.1227  1.1232  1.1227  1.1232  0.0005  0.0012
30/09/16    18:15:00+00:00  1.1232  1.1232  1.1227  1.1227  0.0005  0.0010
30/09/16    18:30:00+00:00  1.1227  1.1231  1.1225  1.1231  0.0006  0.0009
30/09/16    18:45:00+00:00  1.1231  1.1237  1.1230  1.1232  0.0007  0.0008
30/09/16    19:00:00+00:00  1.1232  1.1233  1.1229  1.1231  0.0004  0.0008
30/09/16    19:15:00+00:00  1.1231  1.1234  1.1230  1.1230  0.0004  0.0007
30/09/16    19:30:00+00:00  1.1231  1.1234  1.1230  1.1234  0.0004  0.0007
30/09/16    19:45:00+00:00  1.1233  1.1240  1.1230  1.1239  0.0010  0.0007
30/09/16    20:00:00+00:00  1.1239  1.1242  1.1237  1.1238  0.0005  0.0006
30/09/16    20:15:00+00:00  1.1238  1.1240  1.1235  1.1237  0.0005  0.0006
30/09/16    20:30:00+00:00  1.1237  1.1238  1.1235  1.1235  0.0003  0.0005
30/09/16    20:45:00+00:00  1.1235  1.1236  1.1233  1.1233  0.0003  0.0005
30/09/16    21:00:00+00:00  1.1233  1.1238  1.1233  1.1237  0.0006  0.0005
30/09/16    21:15:00+00:00  1.1237  1.1244  1.1237  1.1242  0.0008  0.0005
30/09/16    21:30:00+00:00  1.1242  1.1243  1.1239  1.1239  0.0004  0.0005
30/09/16    21:45:00+00:00  1.1239  1.1244  1.1236  1.1241  0.0008  0.0006

最佳答案

对于TR see-ATR来说,这不是正确的计算方法,但是这是我的处理方法:

其中alpha = 2/(span + 1)
df['ATR'] = df['TR'].ewm(span = 10).mean()
否则,您应该能够轻松地自己进行平滑处理,如下所示:
df['ATR'] = ( df['ATR'].shift(1)*13 + df['TR'] ) / 14
Pandas ewm

关于python - 使用Python计算OHLC数据的平均真实范围(ATR),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40256338/

10-08 22:26