ATR是给定时间段内True Range的平均值。真实范围是(高-低),这意味着我已经使用以下方法进行了计算:
df['High'].subtract(df['Low']).rolling(distance).mean()
但是,如果需要很短的时间(或上述示例中的“距离”),则ATR可能会非常跳动,即某些数字之间会出现较大的零星间隙。
实际的ATR公式可以识别此问题,并通过执行以下操作使其平滑:
Current ATR = [(Prior ATR x 13) + Current TR] / 14
但是我不确定如何以与上面相同的方式执行此操作,即列宽操作。
我原始方法中的样本数据包括TR和ATR(10):
Date Time Open High Low Close TR ATR
30/09/16 14:45:00+00:00 1.1216 1.1221 1.1208 1.1209 0.0013 0.0013
30/09/16 15:00:00+00:00 1.1209 1.1211 1.1203 1.1205 0.0008 0.0013
30/09/16 15:15:00+00:00 1.1205 1.1216 1.1204 1.1216 0.0012 0.0013
30/09/16 15:30:00+00:00 1.1217 1.1222 1.1213 1.1216 0.0008 0.0013
30/09/16 15:45:00+00:00 1.1216 1.1240 1.1216 1.1240 0.0025 0.0015
30/09/16 16:00:00+00:00 1.1239 1.1246 1.1228 1.1242 0.0019 0.0015
30/09/16 16:15:00+00:00 1.1242 1.1251 1.1235 1.1240 0.0016 0.0016
30/09/16 16:30:00+00:00 1.1240 1.1240 1.1234 1.1236 0.0007 0.0014
30/09/16 16:45:00+00:00 1.1237 1.1245 1.1235 1.1238 0.0009 0.0012
30/09/16 17:00:00+00:00 1.1238 1.1239 1.1231 1.1233 0.0008 0.0012
30/09/16 17:15:00+00:00 1.1233 1.1245 1.1232 1.1240 0.0013 0.0012
30/09/16 17:30:00+00:00 1.1240 1.1242 1.1228 1.1230 0.0013 0.0013
30/09/16 17:45:00+00:00 1.1230 1.1230 1.1221 1.1227 0.0009 0.0013
30/09/16 18:00:00+00:00 1.1227 1.1232 1.1227 1.1232 0.0005 0.0012
30/09/16 18:15:00+00:00 1.1232 1.1232 1.1227 1.1227 0.0005 0.0010
30/09/16 18:30:00+00:00 1.1227 1.1231 1.1225 1.1231 0.0006 0.0009
30/09/16 18:45:00+00:00 1.1231 1.1237 1.1230 1.1232 0.0007 0.0008
30/09/16 19:00:00+00:00 1.1232 1.1233 1.1229 1.1231 0.0004 0.0008
30/09/16 19:15:00+00:00 1.1231 1.1234 1.1230 1.1230 0.0004 0.0007
30/09/16 19:30:00+00:00 1.1231 1.1234 1.1230 1.1234 0.0004 0.0007
30/09/16 19:45:00+00:00 1.1233 1.1240 1.1230 1.1239 0.0010 0.0007
30/09/16 20:00:00+00:00 1.1239 1.1242 1.1237 1.1238 0.0005 0.0006
30/09/16 20:15:00+00:00 1.1238 1.1240 1.1235 1.1237 0.0005 0.0006
30/09/16 20:30:00+00:00 1.1237 1.1238 1.1235 1.1235 0.0003 0.0005
30/09/16 20:45:00+00:00 1.1235 1.1236 1.1233 1.1233 0.0003 0.0005
30/09/16 21:00:00+00:00 1.1233 1.1238 1.1233 1.1237 0.0006 0.0005
30/09/16 21:15:00+00:00 1.1237 1.1244 1.1237 1.1242 0.0008 0.0005
30/09/16 21:30:00+00:00 1.1242 1.1243 1.1239 1.1239 0.0004 0.0005
30/09/16 21:45:00+00:00 1.1239 1.1244 1.1236 1.1241 0.0008 0.0006
最佳答案
对于TR see-ATR来说,这不是正确的计算方法,但是这是我的处理方法:
其中alpha = 2/(span + 1)df['ATR'] = df['TR'].ewm(span = 10).mean()
否则,您应该能够轻松地自己进行平滑处理,如下所示:df['ATR'] = ( df['ATR'].shift(1)*13 + df['TR'] ) / 14
Pandas ewm
关于python - 使用Python计算OHLC数据的平均真实范围(ATR),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40256338/