在下面的Scala Spark代码中,我需要找到不同列的计数及其在值中所占的百分比。为此,我需要对每一列都使用withColumn方法,例如dateusagepaymentdateFinalusageFinalpaymentFinal

对于每次计算,我都需要使用withColumn来获取总和和汇总。有没有什么我不用写的,

.withColumn("SUM", sum("count").over() ).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")

每一次?例如,如下面的代码所示。
var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") /  sum("count").over()).withColumn("Percent", col("fraction") * 100   ).drop("fraction")

var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") /  sum("count").over()).withColumn("Percent", col("fraction") * 100   ).drop("fraction")

var paymentFinalDF = paymentFinal.toDF(PaymentColumn).groupBy(PaymentColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") /  sum("count").over()).withColumn("Percent", col("fraction") * 100).drop("fraction")

现在我的代码是下面的代码,所以您能帮助我们为不同的列(如日期,用途等)添加条件吗(例如,在代码中,我们获取的包含日期的列比我们添加的计数和我们想要的其他条件)多了我们希望它是动态的,所有列的名称都应该放在一个yml文件中,并且必须从该文件中读取这些名称。我该如何实现这一点?任何人都可以提供帮助;在读取YML文件之后,我将如何修改我的代码。
object latest

{

 def main(args: Array[String])

  {


  var fileList = new ListBuffer[String]()
  var dateList = new ListBuffer[String]()
  var fileL = new ListBuffer[String]()

  var fileL1 = new ListBuffer[String]()

  val sparkConf = new SparkConf().setMaster("local[4]").setAppName("hbase sql")
  val sc = new SparkContext(sparkConf)
  val spark1 = SparkSession.builder().config(sc.getConf).getOrCreate()
  val sqlContext = spark1.sqlContext


   import spark1.implicits._

    def f1(number: Double)=
     {
     "%.2f".format(number).toDouble
     }
    val udfFunc = udf(f1 _)

    def getCountPercent(df: DataFrame): DataFrame =

    {
  df.withColumn("SUM", sum("count").over() )
    .withColumn("fraction", col("count") / sum("count").over())
    .withColumn("Percent", col("fraction") * 100 )
    .withColumn("number", udfFunc(col("Percent")))
    .drop("Percent")
    .drop("fraction")

    }


   def occurenceCount(df: DataFrame,column: String)
   {

    var usageFinalDF = df.groupBy(column).count.transform(getCountPercent)

   for (u <- usageFinalDF.collect())
 {
         fileList += column + '~' + u.mkString("~")
  }
}




     val headerCSV=spark1.sqlContext.read.format("CSV").option("header","true").option("delimiter", """|""").load("C:\\Users\\ayushgup\\Downloads\\Header3.csv")

    val columns = headerCSV.columns


  val data =   spark1.sqlContext.read.format("CSV").option("delimiter", """|""").load("C:/Users/ayushgup/Downloads/home_data_usage_2018122723_1372673.csv").toDF(columns:_*)

 for (coll <- columns.toList)
    {

  if (coll.toLowerCase().contains("date"))
    {

    for (datesss <- data.select(coll).collect())
    {
      dateList += datesss.toString().slice(1, 8)

    }

    var dateFinalDF = dateList.toList.toDF(coll)

    occurenceCount(dateFinalDF,coll)

     }
    else if (coll.toLowerCase().contains("usage"))
 {

    var r = data.select(coll).withColumn(coll, when(col(coll) <= 1026, "<=1gb").when(col(coll) > 1026 && col(coll) < 5130, "1-5gb")
      .when(col(coll) > 5130 && col(coll) < 10260, "5-10gb")
      .when(col(coll) > 10260 && col(coll) < 20520, "10-20gb")
      .when(col(coll) > 20520, ">20gb")
      .otherwise(0)).toDF(coll)

      occurenceCount(r,coll)

  }
  else if (coll.toLowerCase().contains("paymentamount"))
  {

    var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
      .when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
      .when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
      .when(col(coll) > 2000, ">2000")
      .otherwise(0)).toDF(coll)

    occurenceCount(r,coll)

  }
   else if (coll.toLowerCase().contains("accounttenure"))
  {

    var r = data.select(coll).withColumn(coll, when(col(coll) > 1000000 && col(coll) < 5000000, "1-5m").when(col(coll) > 5000000 && col(coll) < 11000000, "5-11m")
      .when(col(coll) > 12000000 && col(coll) < 23000000, "12-23m")
      .when(col(coll) > 24000000 && col(coll) < 35000000, "24-35m")
      .when(col(coll) > 36000000, ">36m")
      .otherwise(0)).toDF(coll)

   occurenceCount(r,coll)
  }
  else if (coll.toLowerCase().equals("arpu"))
  {

    var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
      .when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
      .when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
      .when(col(coll) > 2000, ">2000")
      .otherwise(0)).toDF(coll)

   occurenceCount(r,coll)

  }
  else if (coll.equals("DisputeAmount") || coll.equals("ticketsAmount"))
  {

    var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) > 0, ">0")
      .otherwise(1)).toDF(coll)

   occurenceCount(r,coll)

  }
  else if (coll.equals("serviceOrdersCreatedLast90Days"))
  {

    var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) === 1, "1")
      .when(col(coll) === 2, "2")
      .when(col(coll) === 3, "3")
      .when(col(coll) > 3, ">3"))
      .toDF(coll)

   occurenceCount(r,coll)
  }
  else
  {

    import spark1.implicits._

   val actData1 = data.groupBy(coll).count().transform(getCountPercent)



    occurenceCount(actData1,coll)

  }
   }

val f = fileList.toList
for (flist <- f)
   {

   fileL += flist.replaceAll("[\\[\\]]", "")

   }

   var ff = fileL.toDF()


   var df1: DataFrame = ff.selectExpr("split(value, '~')[0] as
     Attribute", "split(value, '~')[1] as Value","split(value, '~')[2] as
     Count","split(value, '~')[3] as Sum","split(value, '~')[4] as
    Percent");

   }

   }

最佳答案

您可以将所有.withColumn()操作封装在一个函数中,该函数将在应用所有操作后返回DataFrame

def getCountPercent(df: DataFrame): DataFrame = {
  df.withColumn("SUM", sum("count").over() )
    .withColumn("fraction", col("count") / sum("count").over())
    .withColumn("Percent", col("fraction") * 100 )
    .drop("fraction")
}

用法:

使用.transform()来应用功能:
var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.transform(getCountPercent)
var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.transform(getCountPercent)

10-06 05:38