P2746 [USACO5.3]校园网Network of Schools
https://www.luogu.org/problem/P2746
题目描述
一些学校连入一个电脑网络。那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作“接受学校”)。注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学校的列表中。
你要写一个程序计算,根据协议,为了让网络中所有的学校都用上新软件,必须接受新软件副本的最少学校数目(子任务 A)。更进一步,我们想要确定通过给任意一个学校发送新软件,这个软件就会分发到网络中的所有学校。为了完成这个任务,我们可能必须扩展接收学校列表,使其加入新成员。计算最少需要增加几个扩展,使得不论我们给哪个学校发送新软件,它都会到达其余所有的学校(子任务 B)。一个扩展就是在一个学校的接收学校列表中引入一个新成员。
输入格式
输入文件的第一行包括一个整数 N:网络中的学校数目(2 <= N <= 100)。学校用前 N 个正整数标识。
接下来 N 行中每行都表示一个接收学校列表(分发列表)。第 i+1 行包括学校 i 的接收学校的标识符。每个列表用 0 结束。空列表只用一个 0 表示。
输出格式
你的程序应该在输出文件中输出两行。
第一行应该包括一个正整数:子任务 A 的解。
第二行应该包括子任务 B 的解。
输入输出样例
输入 #1复制
5
2 4 3 0
4 5 0
0
0
1 0
输出 #1复制
1
2
思路
首先用Tarjan算法对该有向图的SCC进行缩点,构成 一个DAG图。
那么由于DAG图中不存在环,那么每一条链必然存在一个唯一的入度为0的点。
显然,对于每一条链,只需要把软件发给这个入度为0的点,就可以传给这条链上的所有的点。
因此,任务A就转化为求缩点后的DAG图有多少个入度为0的节点,
接下来看任务B:
只要图中存在入度为0的点和出度为0的 节点就不可能满足:
“不论我们给哪个学校发送新软件,它都会到达其余所有的学校”
我们还发现,只要入度为0的节点和出度为0的节点之间连一条边,就可以消掉2个不合法的点,
如果不能做到刚好两两配对(不妨假设入度为0的点多),就给每个多出来的入度为0的点随便找一个出度为0的点配对(也就是说一个点可以同时配多个点)。因此,入度为0的点数与出度为0的点数的较大值即为任务B的答案。
注意:当只有一个SCC的时候,要特判答案为1和0
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 100010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int From[maxn], Laxt[maxn], To[maxn << 2], Next[maxn << 2], cnt;
int low[maxn], dfn[maxn], times, q[maxn], head, scc_cnt, scc[maxn];
bool inst[maxn];
vector<int>G[maxn];
void add(int u, int v)
{
Next[++cnt] = Laxt[u]; From[cnt] = u;
Laxt[u] = cnt; To[cnt] = v;
}
void tarjan(int u)
{
dfn[u] = low[u] = ++times;
q[++head] = u;
inst[u] = 1;
for (int i = Laxt[u]; i; i = Next[i]) {
if (!dfn[To[i]]) {
tarjan(To[i]);
low[u] = min(low[u], low[To[i]]);
} else if (inst[To[i]]) {
low[u] = min(low[u], dfn[To[i]]);
}
}
if (low[u] == dfn[u]) {
scc_cnt++;
while (true) {
int x = q[head--];
scc[x] = scc_cnt;
inst[x] = 0;
if (x == u) { break; }
}
}
}
void init()
{
memset(Laxt, 0, sizeof(Laxt));
cnt = 0;
}
int in[maxn];
int out[maxn];
set<int> st[maxn];
int main()
{
init();
int N, M, u, v, i, j;
scanf("%d", &N);
for (i = 1; i <= N; i++) {
int x;
while (~scanf("%d", &x)) {
if (!x) {
break;
} else {
add(i, x);
}
}
}
repd(i, 1, N)
if (!dfn[i]) {
tarjan(i);
}
for (i = 1; i <= N; i++) {
for (j = Laxt[i]; j; j = Next[j]) {
if (scc[i] != scc[To[j]]) {
out[scc[i]]++;
in[scc[To[j]]]++;
st[scc[i]].insert(scc[To[j]]);
}
}
}
int ans1 = 0;
int ans2 = 0;
int cnt1 = 0;
int cnt2 = 0;
repd(i, 1, scc_cnt) {
if (out[i] == 0) {
cnt1++;
}
if (in[i] == 0) {
ans1++;
cnt2++;
}
}
if (scc_cnt == 1) {
cout << 1 << endl << 0 << endl;
return 0;
}
ans2 = max(cnt2, cnt1);
cout << ans1 << endl << ans2 << endl;
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}