考虑朴素dp。
\[f_{i,j} = f_{i-1,j} + f_{i-1,j-1}*(j+a_i)\]
稍微转换一下下标:
\[f_{i,\Delta} = f_{i-1,\Delta -1} + (a_i+i-\Delta)f_{i-1,\Delta}\]
为了方便,以下的 \(a_i\) 均指 \(a_i + i\)。
拆组合意义:
一个位置上乘了 \(a_i+i\) 的话代表这个位置不选,并且有 $a_i+i $ 的贡献。
然后对于剩下的 \(n\) 个数, 答案是 \(\sum g_{n,i}\) 。
其中 \(g\) 的转移:
\[g_{i,j} = g_{i-1,j -1} -j * g_{i-1,j}\]
为了方便稍微改一下,\(g_i = g_i * (-1)^i\) 。新的转移是:
\[g_{i,j} = -g_{i-1,j -1} +j * g_{i-1,j}\]
新的 dp 的组合意义是 \(i\) 个数分成 \(j\) 组的方案数,每一组有一个 \(-1\) 的贡献。
考虑 \(g_{?,j}\) 的 EGF :
\[\frac {(1-e^x)^j}{j!}\]
然后一列相当于是可以选任意个,那么就是:
\[\large e^{(1-e^x)}\]
前面可以分治 FFT,复杂度 \(O(n\log^2 n)\)。
#include<bits/stdc++.h>
using namespace std;
const int N=5e5+5;
typedef long long ll;
const int mod=998244353;
int add(int a,int b){a+=b;return a>=mod?a-mod:a;}
int sub(int a,int b){a-=b;return a<0?a+mod:a;}
int mul(int a,int b){return (ll)a*b%mod;}
int qpow(int a,int b){int ret=1;for(;b;b>>=1,a=mul(a,a))if(b&1)ret=mul(ret,a);return ret;}
/*math*/
namespace Template_poly{
typedef vector<int> poly;
int rev[N];
poly poly_add(poly A,poly B){
A.resize(max(A.size(),B.size()));
for(size_t i=0;i<B.size();i++)A[i]=add(A[i],B[i]);
return A;
}
poly poly_sub(poly A,poly B){
A.resize(max(A.size(),B.size()));
for(size_t i=0;i<B.size();i++)A[i]=sub(A[i],B[i]);
return A;
}
void DFT(int *t,int n,int type){
int l=0;while(1<<l<n)++l;
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<n;i++)if(rev[i]>i)swap(t[rev[i]],t[i]);
for(int step=1;step<n;step<<=1){
int wn=qpow(3,(mod-1)/(step<<1));
for(int i=0;i<n;i+=step<<1){
int w=1;
for(int k=0;k<step;k++,w=mul(w,wn)){
int x=t[i+k],y=mul(t[i+k+step],w);
t[i+k]=add(x,y),t[i+k+step]=sub(x,y);
}
}
}
if(type==1)return;
for(int i=1;i<n-i;i++)swap(t[i],t[n-i]);
int inv=qpow(n,mod-2);
for(int i=0;i<n;i++)t[i]=mul(t[i],inv);
}
poly NTT(poly A,int n,poly B,int m){
static poly res,PolA,PolB;
PolA=A,PolB=B;
int len=1;while(len < n+m)len<<=1;
res.resize(len);
PolA.resize(len),PolB.resize(len);
DFT(&PolA[0],len,1);DFT(&PolB[0],len,1);
for(int i=0;i<len;i++) res[i]= mul(PolA[i],PolB[i]);
DFT(&res[0],len,-1);
res.resize(n+m-1);
return res;
}
poly NTT(poly A,poly B){
return NTT(A,A.size(),B,B.size());
}
poly poly_inv(poly A,int n){
if(n==1)return poly(1,qpow(A[0],mod-2));
int len=1<<((int)ceil(log2(n))+1);
poly x=poly_inv(A,(n+1)>>1),y;
x.resize(len),y.resize(len);
for(int i=0;i<n;i++)y[i]=A[i];
DFT(&x[0],len,1),DFT(&y[0],len,1);
for(int i=0;i<len;i++)x[i]=mul(x[i],sub(2,mul(x[i],y[i])));
DFT(&x[0],len,-1);
x.resize(n);
return x;
}
poly poly_inv(poly A){
return poly_inv(A,A.size());
}
poly Deri(poly A){
int n=A.size();
for(int i=1;i<n;i++)A[i-1]=mul(A[i],i);
A.resize(n-1);
return A;
}
poly Inte(poly A){
int n=A.size();
A.resize(n+1);
for(int i=n;i;i--)A[i]=mul(A[i-1],qpow(i,mod-2));
A[0]=0;
return A;
}
poly ln(poly A){
int len=A.size();
A=Inte(NTT(Deri(A),poly_inv(A)));
A.resize(len);
return A;
}
poly exp(poly A,int n){
if(n==1)return poly(1,1);
poly x=exp(A,(n+1)>>1),y;
x.resize(n);
y=ln(x);
for(int i=0;i<n;i++)y[i]=sub(A[i],y[i]);
y[0]++;
x=NTT(x,y);
x.resize(n);
return x;
}
poly exp(poly A){
return exp(A,A.size());
}
poly sqrt(poly A,int n){
if(n==1)return poly(1,1);
poly x=sqrt(A,(n+1)>>1),y;
x.resize(n),y.resize(n);
for(int i=0;i<n;i++)y[i]=A[i];
x=poly_add(NTT(poly_inv(x),y),x);
int inv2=qpow(2,mod-2);
for(int i=0;i<n;i++)
x[i]=mul(x[i],inv2);
x.resize(n);
return x;
}
poly sqrt(poly A){
return sqrt(A,A.size());
}
poly rever(poly A){
reverse(A.begin(),A.end());
return A;
}
void div(poly A,poly B,poly &C,poly &D){
int n=A.size(),m=B.size();
poly ra=rever(A),rb=rever(B);
ra.resize(n-m+1),rb.resize(n-m+1);
C=NTT(ra,poly_inv(rb));
C.resize(n-m+1);
C=rever(C);
D=poly_sub(A,NTT(B,C));
D.resize(m);
}
}using namespace Template_poly;
int n,a[N];
poly Divide(int l,int r){
int mid = (l+r)>>1;
if(l==r){
poly ret(2,1);ret[1]=a[l];
return ret;
}return NTT(Divide(l,mid),Divide(mid+1,r));
}
poly A,B;
int main()
{
cin >> n;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
a[i] += i;
}
A=Divide(1,n);
B.resize(n+2);
for(int i=1,_f=1;i<=n+1;i++){
_f=mul(_f,i);
B[i] = mod-qpow(_f,mod-2);
}
B=exp(B);
for(int i=1,f=1;i<=n;i++){
f=mul(f,i);
B[i] = mul(B[i],f);
}
int ans = 0;
for(int i=0;i<=n;i++){
int rest = n-i,d=mod-1;
if((rest-1)%2)d=1;
ans = add(ans, mul(d, mul(A[i], B[n-i])));
}
cout << sub(ans,1) << endl;
}