我试图利用NVBLAS库(http://docs.nvidia.com/cuda/nvblas/)通过将一些计算转移到GPU来加快项目中的线性代数部分(主要是计算统计,MCMC,粒子过滤器和所有这些功能)。
我主要使用C++代码,尤其是Armadillo库进行矩阵计算,并且通过它们的常见问题解答,我知道仅通过以正确的方式链接armadillo(http://arma.sourceforge.net/faq.html)就可以使用NVBLAS。
因此,我设置了库的安装并编写了以下虚拟prog:
#include <armadillo>
int main(){
arma::mat A = arma::randn<arma::mat>(3000,2000);
arma::mat B = cov(A);
arma::vec V = arma::randn(2000);
arma::mat C; arma::mat D;
for(int i = 0; i<20; ++i){ C = solve(V,B); D = inv(B); }
return 0;
}
用它编译
g++ arma_try.cpp -o arma_try.so -larmadillo
并用
nvprof ./arma_try.so
探查器输出显示:
==11798== Profiling application: ./arma_try.so
==11798== Profiling result:
Time(%) Time Calls Avg Min Max Name
72.15% 4.41253s 580 7.6078ms 1.0360ms 14.673ms void magma_lds128_dgemm_kernel<bool=0, bool=0, int=5, int=5, int=3, int=3, int=3>(int, int, int, double const *, int, double const *, int, double*, int, int, int, double const *, double const *, double, double, int)
20.75% 1.26902s 1983 639.95us 1.3440us 2.9929ms [CUDA memcpy HtoD]
4.06% 248.17ms 1 248.17ms 248.17ms 248.17ms void fermiDsyrk_v2_kernel_core<bool=1, bool=1, bool=0, bool=1>(double*, int, int, int, int, int, int, double const *, double const *, double, double, int)
1.81% 110.54ms 1 110.54ms 110.54ms 110.54ms void fermiDsyrk_v2_kernel_core<bool=0, bool=1, bool=0, bool=1>(double*, int, int, int, int, int, int, double const *, double const *, double, double, int)
1.05% 64.023ms 581 110.19us 82.913us 12.211ms [CUDA memcpy DtoH]
0.11% 6.9438ms 1 6.9438ms 6.9438ms 6.9438ms void gemm_kernel2x2_tile_multiple_core<double, bool=1, bool=0, bool=0, bool=1, bool=0>(double*, double const *, double const *, int, int, int, int, int, int, double*, double*, double, double, int)
0.06% 3.3712ms 1 3.3712ms 3.3712ms 3.3712ms void gemm_kernel2x2_core<double, bool=0, bool=0, bool=0, bool=1, bool=0>(double*, double const *, double const *, int, int, int, int, int, int, double*, double*, double, double, int)
0.02% 1.3192ms 1 1.3192ms 1.3192ms 1.3192ms void syherk_kernel_core<double, double, int=256, int=4, bool=1, bool=0, bool=0, bool=1, bool=0, bool=1>(cublasSyherkParams<double, double>)
0.00% 236.03us 1 236.03us 236.03us 236.03us void syherk_kernel_core<double, double, int=256, int=4, bool=0, bool=0, bool=0, bool=1, bool=0, bool=1>(cublasSyherkParams<double, double>)
我认识到dgemm和其他人的地方...所以它起作用了!精彩的。
现在,我想运行相同的代码,但与R接口(interface),因为有时我需要使用它进行输入/输出和绘图。 RcppArmadillo一直为我创造奇迹,与Rcpp一起提供了我需要的所有工具。因此,我编写了cpp:
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
int arma_call(){
arma::mat A = arma::randn<arma::mat>(3000,2000);
arma::mat B = cov(A);
arma::vec V = arma::randn(2000);
arma::mat C; arma::mat D;
for(int i = 0; i<20; ++i){ C = solve(V,B); D = inv(B); }
return 0;
}
和R脚本:
Rcpp::sourceCpp('arma_try_R.cpp')
arma_call()
并尝试通过在控制台上运行来执行它
nvprof R CMD BATCH arma_try_R.R
(编辑:请注意,使用Rscript而不是R CMD BATCH会产生相同的结果)
[NVBLAS] Cannot open default config file 'nvblas.conf'
很奇怪...也许R无论出于什么原因都无法访问该文件,所以我将其复制到工作目录中并重新运行代码:
==12662== NVPROF is profiling process 12662, command: /bin/sh /usr/bin/R CMD BATCH arma_try_R.R
==12662== Profiling application: /bin/sh /usr/bin/R CMD BATCH arma_try_R.R
==12662== Profiling result: No kernels were profiled.
我不知道是什么原因造成的。
我虽然在装有Bumblebee的Linux系统上,但是最后一次尝试是:
nvprof optirun R CMD BATCH arma_try_R.R
将力R与Nvidia卡一起运行,这一次的输出是
==10900== Profiling application: optirun R CMD BATCH arma_try_R.R
==10900== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 1.3760us 1 1.3760us 1.3760us 1.3760us [CUDA memcpy HtoD]
因此,就我所了解的剖析器而言,根本没有对cuda库的调用,也没有对委派给GPU的任何计算。
现在实际上有很多问题,而不仅仅是一个。
/usr/lib64/R/bin/R CMD SHLIB -o 'sourceCpp_27457.so' --preclean 'arma_try_R.cpp'
g++ -I/usr/include/R/ -DNDEBUG -D_FORTIFY_SOURCE=2 -I"/home/marco/R/x86_64-unknown-linux-gnu-library/3.2/Rcpp/include" -I"/home/marco/R/x86_64-unknown-linux-gnu-library/3.2/RcppArmadillo/include" -I"/home/marco/prova_cuda" -fpic -march=x86-64 -mtune=generic -O2 -pipe -fstack-protector-strong --param=ssp-buffer-size=4 -c arma_try_R.cpp -o arma_try_R.o
g++ -shared -L/usr/lib64/R/lib -Wl,-O1,--sort-common,--as-needed,-z,relro -lblas -llapack -o sourceCpp_27457.so arma_try_R.o -llapack -lblas -lgfortran -lm -lquadmath -L/usr/lib64/R/lib -lR
即使我强制使用-larmadillo而不是-lblas标志(通过PKG_LIBS env var),也不会发生任何变化。
如果您需要更多输出,我可以提供所需的内容,无论如何,感谢您阅读本文!
编辑:
ldd /usr/lib/R/lib/libR.so
[NVBLAS] Using devices :0
linux-vdso.so.1 (0x00007ffdb5bd6000)
/opt/cuda/lib64/libnvblas.so (0x00007f4afaccd000)
libblas.so => /usr/lib/libblas.so (0x00007f4afa6ea000)
libm.so.6 => /usr/lib/libm.so.6 (0x00007f4afa3ec000)
libreadline.so.6 => /usr/lib/libreadline.so.6 (0x00007f4afa1a1000)
libpcre.so.1 => /usr/lib/libpcre.so.1 (0x00007f4af9f31000)
liblzma.so.5 => /usr/lib/liblzma.so.5 (0x00007f4af9d0b000)
libbz2.so.1.0 => /usr/lib/libbz2.so.1.0 (0x00007f4af9afa000)
libz.so.1 => /usr/lib/libz.so.1 (0x00007f4af98e4000)
librt.so.1 => /usr/lib/librt.so.1 (0x00007f4af96dc000)
libdl.so.2 => /usr/lib/libdl.so.2 (0x00007f4af94d7000)
libgomp.so.1 => /usr/lib/libgomp.so.1 (0x00007f4af92b5000)
libpthread.so.0 => /usr/lib/libpthread.so.0 (0x00007f4af9098000)
libc.so.6 => /usr/lib/libc.so.6 (0x00007f4af8cf3000)
/usr/lib64/ld-linux-x86-64.so.2 (0x0000556509792000)
libcublas.so.7.5 => /opt/cuda/lib64/libcublas.so.7.5 (0x00007f4af7414000)
libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x00007f4af7092000)
libgcc_s.so.1 => /usr/lib/libgcc_s.so.1 (0x00007f4af6e7b000)
libncursesw.so.6 => /usr/lib/libncursesw.so.6 (0x00007f4af6c0e000)
因此,除了奇怪的
[NVBLAS] Using devices :0
之外,似乎R至少知道cuda nvblas库... 最佳答案
要回答我自己的问题:是的,有可能并且足以使R指向正确的(NV)BLAS库,并且RcppArmadillo将在正确的位置获取例程(您可能需要阅读Dirk Eddelbuettel对问题的评论以查看为什么 )
现在,介绍我的问题的具体内容以及进行自我解答的原因:
我认为问题不在我想的地方。
例如,当我在另一个终端而不是运行nvidia-smi
上运行Rscript arma_try_R.R
时
+------------------------------------------------------+
| NVIDIA-SMI 352.41 Driver Version: 352.41 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 860M Off | 0000:01:00.0 Off | N/A |
| N/A 64C P0 N/A / N/A | 945MiB / 2047MiB | 21% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 20962 C /usr/lib64/R/bin/exec/R 46MiB |
| 0 21598 C nvidia-smi 45MiB |
+-----------------------------------------------------------------------------+
这意味着GPU确实可以正常工作!
因此,问题出在nvprof例程中,该例程无法检测到该例程,有时会卡住我的Rscript。但这是另一个完全不相关的问题。
(我将等待接受它作为答案,看看是否有人来并更巧妙地解决它...)