我已经为多项式图编译了我的代码,但是没有绘制。我正在使用scikit Learn的SVR(支持向量回归),我的代码如下。它没有显示任何错误消息,而只是显示了我的数据。我不知道怎么回事。有没有人?它甚至没有在变量控制台上显示任何描述我的数据的内容。
import pandas as pd
import numpy as np
from sklearn.svm import SVR
from sklearn import cross_validation
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
df = pd.read_csv('coffee.csv')
print(df)
df = df[['Date','Amount_prod','Beverage_index']]
x = np.array(df.Amount_prod)
y = np.array(df.Beverage_index)
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
x, y, test_size=0.2)
x_train = np.pad(x, [(0,0)], mode='constant')
x_train.reshape((26,1))
y_train = np.pad(y, [(0,0)], mode='constant')
y_train.reshape((26,1))
x_train = np.arange(26).reshape((26, 1))
x_train = x.reshape((26, 1))
c = x.T
np.all(x_train == c)
x_test = np.arange(6).reshape((-1,1))
x_test = x.reshape((-1,1))
c2 = x.T
np.all(x_test == c2)
y_test = np.arange(6).reshape((-1,1))
y_test = y.reshape((-1,1))
c2 = y.T
np.all(y_test ==c2)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_poly = svr_poly.fit(x_train,y_train).predict(x_train)
plt.scatter(x_train, y_train, color='black')
plt.plot(x_train, y_poly)
plt.show()
数据样本:
Date Amount_prod Beverage_index
1990 83000 78
1991 102000 78
1992 94567 86
1993 101340 88
1994 96909 123
1995 92987 101
1996 103489 99
1997 99650 109
1998 107849 110
1999 123467 90
2000 112586 67
2001 113485 67
2002 108765 90
最佳答案
试试下面的代码。支持向量机期望其输入具有零均值和单位方差。不是情节,而是阻碍。这是对fit
的调用。
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
svr_poly = make_pipeline(StandardScaler(), SVR(kernel='poly', C=1e3, degree=2))
y_poly = svr_poly.fit(x_train,y_train).predict(x_train)