我在窗口露脸和一些特殊点时编写程序(68)。
我使用Haar Casscade和FaceLandmarkLBF。我的程序有问题。当脸部位置稳定时,脸部点会抖动(抖动)。我该如何解决?谢谢。
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/face.hpp>
using cv::Scalar;
using cv::Point;
int main(int argc, char** argv)
{
cv::CascadeClassifier faceDetector("haarcascade_frontalface_alt2.xml");
cv::Ptr<cv::face::Facemark>facemark = cv::face::FacemarkLBF::create();
facemark->loadModel("lbfmodel.yaml");
cv::VideoCapture vc(0);
while (true)
{
cv::Mat frame, gray;
vc.read(frame);
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
//
std::vector<cv::Rect> faces;
faceDetector.detectMultiScale(gray, faces);
std::vector< std::vector<cv::Point2f> > landmarks;
bool success = facemark->fit(frame, faces, landmarks);
for (size_t i = 0; i < landmarks.size(); i++)
{
for (size_t j = 0; j < landmarks[i].size(); j++)
{
cv::circle(frame, cv::Point(landmarks[i][j].x, landmarks[i][j].y), 2, Scalar(255, 0, 0), 2);
}
}
cv::imshow("1", frame);
if ((char)cv::waitKey(20) == 27)
break;
}
return 0;
}
我看到了@Nuzhny链接:lkdemo.cpp。并非所有事情对我来说都是清楚的。
我重写了代码,但没有任何变化:
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include "opencv2/video/tracking.hpp"
#include <opencv2/face.hpp>
int main(int argc, char** argv)
{
cv::CascadeClassifier faceDetector("haarcascade_frontalface_alt2.xml");
cv::Ptr<cv::face::Facemark>facemark = cv::face::FacemarkLBF::create();
facemark->loadModel("lbfmodel.yaml");
cv::VideoCapture vc(0);
cv::Mat gray, prevGray, image, frame;
cv::Size subPixWinSize(10, 10), winSize(64, 64);
cv::TermCriteria termcrit(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 20, 0.03);
std::vector<uchar> status;
std::vector<float> err;
std::vector<cv::Point2f> oldLandmarks;
std::vector< std::vector<cv::Point2f> > landmarks;
bool b = true;
while (true)
{
vc.read(frame);
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
std::vector<cv::Rect> faces;
faceDetector.detectMultiScale(gray, faces);
bool success = facemark->fit(frame, faces, landmarks);
if (!success)
{
cv::imshow("1", frame);
continue;
}
if (oldLandmarks.empty())
oldLandmarks = landmarks.front();
if (prevGray.empty())
gray.copyTo(prevGray);
calcOpticalFlowPyrLK(prevGray, gray, landmarks.front(), oldLandmarks, status, err, winSize, 3, termcrit, cv::OPTFLOW_LK_GET_MIN_EIGENVALS, 0.001);
for (size_t i = 0; i < oldLandmarks.size(); i++)
{
cv::circle(frame, cv::Point(oldLandmarks[i].x, oldLandmarks[i].y), 2, cv::Scalar(255, 0, 0), 2);
}
cv::imshow("1", frame);
std::swap(oldLandmarks, landmarks.front());
cv::swap(prevGray, gray);
if ((char)cv::waitKey(20) == 27)
break;
}
return 0;
}
最佳答案
仅LK跟踪可能还不够。我正在编写一些简单的应用程序,用于使用线性卡尔曼滤波器在LK之后校正地标( EDIT 2 -删除上一个地标):
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp>
///
class PointState
{
public:
PointState(cv::Point2f point)
:
m_point(point),
m_kalman(4, 2, 0, CV_64F)
{
Init();
}
void Update(cv::Point2f point)
{
cv::Mat measurement(2, 1, CV_64FC1);
if (point.x < 0 || point.y < 0)
{
Predict();
measurement.at<double>(0) = m_point.x; //update using prediction
measurement.at<double>(1) = m_point.y;
m_isPredicted = true;
}
else
{
measurement.at<double>(0) = point.x; //update using measurements
measurement.at<double>(1) = point.y;
m_isPredicted = false;
}
// Correction
cv::Mat estimated = m_kalman.correct(measurement);
m_point.x = static_cast<float>(estimated.at<double>(0)); //update using measurements
m_point.y = static_cast<float>(estimated.at<double>(1));
Predict();
}
cv::Point2f GetPoint() const
{
return m_point;
}
bool IsPredicted() const
{
return m_isPredicted;
}
private:
cv::Point2f m_point;
cv::KalmanFilter m_kalman;
double m_deltaTime = 0.2;
double m_accelNoiseMag = 0.3;
bool m_isPredicted = false;
void Init()
{
m_kalman.transitionMatrix = (cv::Mat_<double>(4, 4) <<
1, 0, m_deltaTime, 0,
0, 1, 0, m_deltaTime,
0, 0, 1, 0,
0, 0, 0, 1);
m_kalman.statePre.at<double>(0) = m_point.x; // x
m_kalman.statePre.at<double>(1) = m_point.y; // y
m_kalman.statePre.at<double>(2) = 1; // init velocity x
m_kalman.statePre.at<double>(3) = 1; // init velocity y
m_kalman.statePost.at<double>(0) = m_point.x;
m_kalman.statePost.at<double>(1) = m_point.y;
cv::setIdentity(m_kalman.measurementMatrix);
m_kalman.processNoiseCov = (cv::Mat_<double>(4, 4) <<
pow(m_deltaTime, 4.0) / 4.0, 0, pow(m_deltaTime, 3.0) / 2.0, 0,
0, pow(m_deltaTime, 4.0) / 4.0, 0, pow(m_deltaTime, 3.0) / 2.0,
pow(m_deltaTime, 3.0) / 2.0, 0, pow(m_deltaTime, 2.0), 0,
0, pow(m_deltaTime, 3.0) / 2.0, 0, pow(m_deltaTime, 2.0));
m_kalman.processNoiseCov *= m_accelNoiseMag;
cv::setIdentity(m_kalman.measurementNoiseCov, cv::Scalar::all(0.1));
cv::setIdentity(m_kalman.errorCovPost, cv::Scalar::all(.1));
}
cv::Point2f Predict()
{
cv::Mat prediction = m_kalman.predict();
m_point.x = static_cast<float>(prediction.at<double>(0));
m_point.y = static_cast<float>(prediction.at<double>(1));
return m_point;
}
};
///
void TrackPoints(cv::Mat prevFrame, cv::Mat currFrame,
const std::vector<cv::Point2f>& currLandmarks,
std::vector<PointState>& trackPoints)
{
// Lucas-Kanade
cv::TermCriteria termcrit(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 30, 0.01);
cv::Size winSize(7, 7);
std::vector<uchar> status(trackPoints.size(), 0);
std::vector<float> err;
std::vector<cv::Point2f> newLandmarks;
std::vector<cv::Point2f> prevLandmarks;
std::for_each(trackPoints.begin(), trackPoints.end(), [&](const PointState& pts) { prevLandmarks.push_back(pts.GetPoint()); });
cv::calcOpticalFlowPyrLK(prevFrame, currFrame, prevLandmarks, newLandmarks, status, err, winSize, 3, termcrit, 0, 0.001);
for (size_t i = 0; i < status.size(); ++i)
{
if (status[i])
{
trackPoints[i].Update((newLandmarks[i] + currLandmarks[i]) / 2);
}
else
{
trackPoints[i].Update(currLandmarks[i]);
}
}
}
///
int main(int argc, char** argv)
{
cv::CascadeClassifier faceDetector("haarcascade_frontalface_alt2.xml");
cv::Ptr<cv::face::Facemark> facemark = cv::face::FacemarkLBF::create();
facemark->loadModel("lbfmodel.yaml");
cv::VideoCapture cam(0, cv::CAP_DSHOW);
cv::namedWindow("Facial Landmark Detection", cv::WINDOW_NORMAL);
cv::Mat frame;
cv::Mat currGray;
cv::Mat prevGray;
std::vector<PointState> trackPoints;
trackPoints.reserve(68);
while (cam.read(frame))
{
std::vector<cv::Rect> faces;
cv::cvtColor(frame, currGray, cv::COLOR_BGR2GRAY);
faceDetector.detectMultiScale(currGray, faces, 1.1, 3, cv::CASCADE_FIND_BIGGEST_OBJECT);
std::vector<std::vector<cv::Point2f>> landmarks;
bool success = facemark->fit(frame, faces, landmarks);
if (success)
{
if (prevGray.empty())
{
trackPoints.clear();
for (cv::Point2f lp : landmarks[0])
{
trackPoints.emplace_back(lp);
}
}
else
{
if (trackPoints.empty())
{
for (cv::Point2f lp : landmarks[0])
{
trackPoints.emplace_back(lp);
}
}
else
{
TrackPoints(prevGray, currGray, landmarks[0], trackPoints);
}
}
for (const PointState& tp : trackPoints)
{
cv::circle(frame, tp.GetPoint(), 3, tp.IsPredicted() ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 255, 0), cv::FILLED);
}
for (cv::Point2f lp : landmarks[0])
{
cv::circle(frame, lp, 2, cv::Scalar(255, 0, 255), cv::FILLED);
}
}
cv::imshow("Facial Landmark Detection", frame);
if (cv::waitKey(1) == 27)
break;
prevGray = currGray;
}
return 0;
}
因此,在LK + Kalman:result video之后更正了margenta点-原始地标和绿色点。
您可以使用2个常数来更改Kalman选项:
double m_deltaTime = 0.2;
double m_accelNoiseMag = 0.3;
这是等待时间和噪音。