非常感谢您提供有关此问题的帮助。看起来应该很简单。
我在名为Totals的熊猫数据框中有两列:Totals ['Connections']和Totals ['Expected']。 Totals ['Connections']包含观察到的相关变量的发生次数; Totals ['Expected']包含预期的观察数。我想使用scipy chisquare函数比较两者。我通过以下方式执行此操作:
sp.stats.chisquare([Totals.Connections], f_exp=[Totals.Expected])
但是,当我这样做时,我得到了有效的测试统计量,但是我的p值却是“ nan”,如下所示(请参见下文)。另外,结果开头的“ Power_divergence”文本是什么意思?谁能解释我在这里做错了什么?
Power_divergenceResult(statistic=array([ 1.05408049e+03, 6.30832196e+02, 7.02987722e+01,
9.17326057e+00, 1.56193724e+01, 3.36275580e+01,
6.16076398e+02, 1.50373806e+02, 2.94802183e+01,
2.65321965e+02, 1.00900409e+01, 3.06515689e+02,
1.38828104e+02, 3.68894952e+02, 1.92873124e+02,
5.67564802e+02, 2.36092769e+02, 1.77298772e+03,
3.55388267e+03, 6.42013643e+02, 1.55858117e+02,
1.22783083e+02, 1.36425648e-03, 2.47579809e+02,
2.36092769e+02, 7.02987722e+01, 1.23124147e+01,
6.10587995e+02, 2.75088677e+01, 2.76261937e+02,
2.00121419e+02, 4.97702592e+02, 2.01167804e+02,
1.26909959e+02, 2.60530696e+02, 6.66316508e+01,
2.15019100e+02]), pvalue=array([ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan]))
最佳答案
看起来您希望每个参数都是一维的,但是在参数周围有多余的括号,这为每个参数增加了额外的维度。删除那些多余的括号:
sp.stats.chisquare(Totals.Connections, f_exp=Totals.Expected)
例如,这是
chisquare
的典型用法:In [49]: chisquare([4, 4, 5, 5], [4, 3, 7, 4])
Out[49]: Power_divergenceResult(statistic=1.1547619047619047, pvalue=0.76387343970439647)
如果将参数包装在额外的括号中,它们将变为二维,并且chisquare将应用于每个(平凡的)列(因为默认值为
axis=0
):In [50]: chisquare([[4, 4, 5, 5]], [[4, 3, 7, 4]])
Out[50]: Power_divergenceResult(statistic=array([ 0. , 0.33333333, 0.57142857, 0.25 ]), pvalue=array([ nan, nan, nan, nan]))
该计算与调用
chisquare
四次相同,对于参数的每一列一次。当参数的长度仅为1时,p值为nan
:In [59]: chisquare([4], [4])
Out[59]: Power_divergenceResult(statistic=0.0, pvalue=nan)
In [60]: chisquare([4], [3])
Out[60]: Power_divergenceResult(statistic=0.33333333333333331, pvalue=nan)
In [61]: chisquare([5], [7])
Out[61]: Power_divergenceResult(statistic=0.5714285714285714, pvalue=nan)
In [62]: chisquare([5], [4])
Out[62]: Power_divergenceResult(statistic=0.25, pvalue=nan)
为了获得预期的结果,同时保留多余的括号,您必须使用
axis=1
:In [63]: chisquare([[4, 4, 5, 5]], [[4, 3, 7, 4]], axis=1)
Out[63]: Power_divergenceResult(statistic=array([ 1.1547619]), pvalue=array([ 0.76387344]))
关于python - 在scipy chisquare中获取p值的nan:不知道为什么?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/40380217/