我正在学习ml,并为波士顿房价预测做任务。我有以下代码:

from sklearn.metrics import fbeta_score, make_scorer
from sklearn.model_selection import GridSearchCV

def fit_model(X, y):
    """ Tunes a decision tree regressor model using GridSearchCV on the input data X
        and target labels y and returns this optimal model. """

    # Create a decision tree regressor object
    regressor = DecisionTreeRegressor()

    # Set up the parameters we wish to tune
    parameters = {'max_depth':(1,2,3,4,5,6,7,8,9,10)}

    # Make an appropriate scoring function
    scoring_function = make_scorer(fbeta_score, beta=2)

    # Make the GridSearchCV object
    reg = GridSearchCV(regressor, param_grid=parameters, scoring=scoring_function)

    print reg
    # Fit the learner to the data to obtain the optimal model with tuned parameters
    reg.fit(X, y)

    # Return the optimal model
    return reg.best_estimator_

reg = fit_model(housing_features, housing_prices)

这给了我valueerror:reg.fit(x,y)行不支持continuous,我不明白为什么。这是什么原因,我错过了什么?

最佳答案

那是因为台词:

scoring_function = make_scorer(fbeta_score, beta=2)

这将评分标准设置为fbeta,用于分类任务!
您正在进行回归,如中所示:
regressor = DecisionTreeRegressor()

the docs
python - GridSearchCV给出ValueError:DecisionTreeRegressor不支持continuous-LMLPHP

09-06 02:03