1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 1e5+5; 4 typedef long long ll; 5 char s[maxn]; 6 int sa[maxn], t[maxn], t2[maxn], c[maxn]; 7 int n; 8 //构造字符串s的后缀数组, 每个字符值必须为0 ~ m-1 9 void build_sa(int m) { 10 int *x = t, *y = t2; 11 //基数排序 12 for(int i = 0; i < m; i++) c[i] = 0; 13 for(int i = 0; i < n; i++) c[x[i] = s[i]]++; 14 for(int i = 1; i < m; i++) c[i] += c[i-1]; 15 for(int i = n-1; i >= 0; i--) sa[--c[x[i]]] = i; 16 for(int k = 1; k <= n; k <<= 1) { 17 int p = 0; 18 //直接利用sa数组排序第二关键字 19 for(int i = n-k; i < n; i++) y[p++] = i; 20 for(int i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k; 21 //基数排序第一关键字 22 for(int i = 0; i < m; i++) c[i] = 0; 23 for(int i = 0; i < n; i++) c[x[y[i]]]++; 24 for(int i = 1; i < m; i++) c[i] += c[i-1]; 25 for(int i = n-1; i>= 0; i--) sa[--c[x[y[i]]]] = y[i]; 26 //根据sa和y数组计算新的x数组 27 swap(x, y); 28 p = 1; 29 x[sa[0]] = 0; 30 for(int i = 1; i < n; i++) 31 x[sa[i]] = (y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+k] == y[sa[i]+k] ? p-1 : p++); 32 if(p >= n) break; 33 m = p; 34 } 35 } 36 37 int rank_[maxn]; //rank[i]代表后缀i在sa数组中的下标 38 int height[maxn]; //height[i] 定义为sa[i-1] 和 sa[i] 的最长公共前缀 39 //后缀j和k的LCP长度等于RMQ(height, rank[j]+1, rank[k]) 40 void get_height() { 41 int i, j, k = 0; 42 for(int i = 0; i < n; i++) rank_[sa[i]] = i; 43 for(int i = 0; i < n; i++) { 44 if(!rank_[i]) continue; 45 int j = sa[rank_[i]-1]; 46 if(k) k--; 47 48 while(s[i+k] == s[j+k]) k++; 49 height[rank_[i]] = k; 50 } 51 } 52 int main() { 53 scanf("%d",&n); 54 scanf("%s",s); 55 build_sa(128); 56 get_height(); 57 ll ans = 0; 58 for (int i = 0; i < n; i++) { 59 ans += n-sa[i]-height[i]; 60 } 61 printf("%lld\n",ans); 62 return 0; 63 }