我喜欢使用np.fromiter
fromnumpy
的方法,因为它是构建np.array
对象的一种资源懒惰的方法。然而,它似乎不支持多维数组,这也是非常有用的。
import numpy as np
def fun(i):
""" A function returning 4 values of the same type.
"""
return tuple(4*i + j for j in range(4))
# Trying to create a 2-dimensional array from it:
a = np.fromiter((fun(i) for i in range(5)), '4i', 5) # fails
# This function only seems to work for 1D array, trying then:
a = np.fromiter((fun(i) for i in range(5)),
[('', 'i'), ('', 'i'), ('', 'i'), ('', 'i')], 5) # painful
# .. `a` now looks like a 2D array but it is not:
a.transpose() # doesn't work as expected
a[0, 1] # too many indices (of course)
a[:, 1] # don't even think about it
我如何才能让
a
成为一个多维数组,同时保持这种基于生成器的惰性构造? 最佳答案
本身,np.fromiter
只支持构造一维数组,因此,它期望一个iterable,它将生成单个值而不是元组/列表/序列等。解决此限制的一种方法是使用itertools.chain.from_iterable
将生成器表达式的输出延迟“解包”为单个一维数值顺序:
import numpy as np
from itertools import chain
def fun(i):
return tuple(4*i + j for j in range(4))
a = np.fromiter(chain.from_iterable(fun(i) for i in range(5)), 'i', 5 * 4)
a.shape = 5, 4
print(repr(a))
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]], dtype=int32)
关于python - 在Python中协调np.fromiter和多维数组,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/34018470/