题意
首先有个结论:
\(d(i,j)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)
证明:
假设\(i=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k},j=p_1^{b_1}*p_2^{b_2}*...*p_k^{b_k}\),则\(i*j=p_1^{a_1+b_1}*p_2^{a_2+b_2}*...*p_k^{a_k+b_k}\)
考虑第\(i\)个质因子\(p_i\),如果\(x,y\)互质,则\(x,y\)只能有一个有\(p_i\),x有是\(a_i\)种,\(y\)有是\(b_i\)种,都没有是1种,总共\((a_i+b_i+1)\)种,与约数个数和公式中相符。
于是式子变为:
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\)
改为枚举\(x,y\):
\(\sum\limits_{x=1}^{n}\sum\limits_{y=1}^m[\gcd(x,y)]*\frac{n}{x}*\frac{m}{y}\)
设\(f(x)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[\gcd(i,j)=x],F(x)=\sum\limits_{n|d}f(d)\)
则:
\(F(x)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[x|\gcd(i,j)]\)
提出\(x\):
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}*[1|\gcd(i,j)]\)
即:
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}\)
莫比乌斯反演:
\(f(x)=\sum\limits_{x|d}\mu(\frac{d}{x})F(x)\)
\(ans=f(1)=\sum\limits_{1|d}\mu(\frac{d}{1})F(d)\)
\(=\sum\limits_{d=1}^{min(n,m)}\mu(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}\frac{n}{i*d}*\frac{m}{j*d}\)
预处理\(g(x)=\sum\limits_{i=1}^{x}\frac{x}{i}\),并求出莫比乌斯函数的前缀和\(sum_i\),后面那一部分显然可以除法分块。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5*1e4+10;
int T,n,m;
int mu[maxn],sum[maxn];
ll g[maxn];
bool vis[maxn];
vector<int>prime;
inline void shai(int n)
{
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
for(int i=1;i<=n;i++)
for(int l=1,r;l<=i;l=r+1)
r=i/(i/l),g[i]+=1ll*(r-l+1)*(i/l);
}
inline ll solve(int n,int m)
{
ll res=0;
for(int l=1,r;l<=min(n,m);l=r+1)
{
r=min(n/(n/l),m/(m/l));
res+=1ll*(sum[r]-sum[l-1])*g[n/l]*g[m/l];
}
return res;
}
int main()
{
shai(50000);
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
return 0;
}