我正在尝试使用Keras在GPU上训练一个简单的GAN。我验证了代码是否在笔记本电脑上与CPU一起运行。然后,我按如下所示添加了multi_gpu_model,以使其能够在一组GPU上运行。但是,我收到以下错误:

RuntimeError: ('The name "Discriminator" is used 2 times in the model. All layer names should be unique. Layer names: ', ['input_3', 'input_4', 'lambda_3', 'lambda_4', 'lambda_5', 'lambda_6', 'model_3', 'Discriminator', 'Discriminator'])

该错误似乎表明,因为我多次调用了Discriminator模型,所以图层的名称重叠了。但是,我不清楚如何解决该问题。为了方便起见,下面提供了完整的代码:
from __future__ import print_function, division

from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.merge import _Merge
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D, Convolution2D, Conv2DTranspose
from keras.models import Sequential, Model
from keras.optimizers import Adam, RMSprop
from keras.utils import multi_gpu_model

import keras.backend as K
from optimizer import optimAdam
from functools import partial
# import inception_score

import _pickle as cPickle
import matplotlib.pyplot as plt
import os
import sys
import tensorflow as tf
import numpy as np
from PIL import Image

BATCH_SIZE = 128
GRADIENT_PENALTY_WEIGHT = 10

class RandomWeightedAverage(_Merge):
    """Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line
    between each pair of input points.
    Inheriting from _Merge is a little messy but it was the quickest solution I could think of.
    Improvements appreciated."""

    def _merge_function(self, inputs):
        weights = K.random_uniform((BATCH_SIZE, 1, 1, 1))
        return (weights * inputs[0]) + ((1 - weights) * inputs[1])

class GANGPU():

    def __init__(self,gan_type):

        assert gan_type in ['gan','wgan','improved_wgan','optim']
        print("GAN Type: " + gan_type)
        self.type = gan_type
        self.noise_shape = (100,)
        self.img_shape = (28, 28, 1)
        self.clip_value = 0.0001 # threshold for weight cliping (-c,c)
        self.d_losses = []
        real_img = Input(shape=self.img_shape)

        # set gan type specific parameters
        optimizer = self.select_optimizer()
        loss = self.select_loss()
        self.n_critic = self.select_n_critic()

        # Now we initialize the generator and discriminator.
        generator = self.make_generator()
        discriminator = self.make_discriminator()

        # The parallel_generator_model is used when we want to train the generator layers.
        # As such, we ensure that the discriminator layers are not trainable.
        for layer in discriminator.layers:
            layer.trainable = False
        discriminator.trainable = False
        generator_input = Input(shape=(100,))
        generator_layers = generator(generator_input)
        discriminator_layers_for_generator = discriminator(generator_layers)
        generator_model = Model(inputs=[generator_input], outputs=[discriminator_layers_for_generator])
        # We use the Adam paramaters from Gulrajani et al.
        parallel_generator_model = multi_gpu_model(generator_model, gpus=2)
        parallel_generator_model.compile(optimizer=optimizer, loss=loss)

        # Now that the parallel_generator_model is compiled, we can make the discriminator layers trainable.
        for layer in discriminator.layers:
            layer.trainable = True
        for layer in generator.layers:
            layer.trainable = False
        discriminator.trainable = True
        generator.trainable = False

        # The parallel_discriminator_model is more complex. It takes both real image samples and random noise seeds as input.
        # The noise seed is run through the generator model to get generated images. Both real and generated images
        # are then run through the discriminator.
        real_samples = Input(shape=self.img_shape)
        generator_input_for_discriminator = Input(shape=self.noise_shape)
        generated_samples_for_discriminator = generator(generator_input_for_discriminator)
        discriminator_output_from_generator = discriminator(generated_samples_for_discriminator)
        discriminator_output_from_real_samples = discriminator(real_samples)

        if self.type in ['gan','wgan']:
            discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator],
                                        outputs=[discriminator_output_from_real_samples,
                                                 discriminator_output_from_generator])
            parallel_discriminator_model = multi_gpu_model(discriminator_model, gpus=2)
            parallel_discriminator_model.compile(optimizer=optimizer,
                                        loss=[loss,
                                              loss])

        elif self.type in ['improved_wgan','optim']:
            print("Gradient Penalty Applied")

            # We also need to generate weighted-averages of real and generated samples, to use for the gradient norm penalty.
            averaged_samples = RandomWeightedAverage()([real_samples, generated_samples_for_discriminator])
            # We then run these samples through the discriminator as well. Note that we never really use the discriminator
            # output for these samples - we're only running them to get the gradient norm for the gradient penalty loss.
            averaged_samples_out = discriminator(averaged_samples)

            # The gradient penalty loss function requires the input averaged samples to get gradients. However,
            # Keras loss functions can only have two arguments, y_true and y_pred. We get around this by making a partial()
            # of the function with the averaged samples here.
            partial_gp_loss = partial(self.gradient_penalty_loss,
                                      averaged_samples=averaged_samples,
                                      gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
            partial_gp_loss.__name__ = 'gradient_penalty'  # Functions need names or Keras will throw an error

            discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator],
                    outputs=[discriminator_output_from_real_samples,
                             discriminator_output_from_generator,
                             averaged_samples_out])
            parallel_discriminator_model = multi_gpu_model(discriminator_model, gpus=2)
            parallel_discriminator_model.compile(optimizer=optimizer,
                                        loss=[loss,
                                              loss,
                                              partial_gp_loss])

        self.parallel_generator_model, self.parallel_discriminator_model = parallel_generator_model, parallel_discriminator_model
        self.generator, self.discriminator = generator, discriminator

    def select_optimizer(self):
        if self.type == 'gan':
            print("Optimizer: Adam")
            return Adam(lr=0.0002, beta_1=0.5)
        elif self.type == 'wgan':
            print("Optimizer: RMSProp")
            return RMSprop(lr=0.00005)
        elif self.type == 'improved_wgan':
            print("Optimizer: Adam")
            return Adam(lr=0.0001, beta_1=0.5, beta_2=0.9)
        elif self.type == 'optim':
            print("Optimizer: OptimAdam")
            return optimAdam(lr=0.0001, beta_1=0.5, beta_2=0.9)

    def select_loss(self):
        if self.type == 'gan':
            print("Loss: Binary Cross Entropy")
            return 'binary_crossentropy'
        elif self.type in ['wgan','improved_wgan','optim']:
            print("Loss: Wasserstein")
            return self.wasserstein_loss

    def select_n_critic(self):
        if self.type == 'gan':
            print("Critics Ratio: 1")
            return 1
        elif self.type in ['wgan','improved_wgan','optim']:
            print("Critics Ratio: 5")
            return 5

    # for WGAN, Improved WGAN, Optim
    def wasserstein_loss(self, y_true, y_pred):
        return K.mean(y_true * y_pred)

    # for Improved WGAN, Optim
    def gradient_penalty_loss(self, y_true, y_pred, averaged_samples, gradient_penalty_weight):
        gradients = K.gradients(K.sum(y_pred), averaged_samples)
        gradient_l2_norm = K.sqrt(K.sum(K.square(gradients)))
        gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm)
        return gradient_penalty

    def make_generator(self):
        # 2-layer fully connected NN: 100 x 512 x 784
        model = Sequential(name='Generator')
        model.add(Dense(256, activation="relu", input_dim=100))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))
        return model

    def make_discriminator(self):
        # 2-layer fully connected NN: 784 x 512 x 1
        model = Sequential(name='Discriminator')
        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512, activation="relu"))
        model.add(Dense(1, activation='sigmoid'))
        return model

    def generate_images(self, output_dir, epoch):
        """Feeds random seeds into the generator and tiles and saves the output to a PNG file."""
        def tile_images(image_stack):
            """Given a stacked tensor of images, reshapes them into a horizontal tiling for display."""
            assert len(image_stack.shape) == 3
            image_list = [image_stack[i, :, :] for i in range(image_stack.shape[0])]
            tiled_images = np.concatenate(image_list, axis=1)
            return tiled_images

        test_image_stack = self.generator.predict(np.random.rand(100, 100))
        test_image_stack = (test_image_stack * 127.5) + 127.5
        test_image_stack = np.squeeze(np.round(test_image_stack).astype(np.uint8))
        tiled_output = tile_images(test_image_stack)
        tiled_output = Image.fromarray(tiled_output, mode='L')  # L specifies greyscale
        outfile = os.path.join(output_dir, 'epoch_{}.png'.format(epoch))
        tiled_output.save(outfile)
        outfile = os.path.join(output_dir, 'epoch_{}.pkl'.format(epoch))
        with open(outfile, 'wb') as f:
            cPickle.dump(test_image_stack, f)

    def train(self, epochs, batch_size=128, save_interval=50):
        # First we load the image data, reshape it and normalize it to the range [-1, 1]
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        X_train = np.concatenate((X_train, X_test), axis=0)
        if K.image_data_format() == 'channels_first':
            X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1], X_train.shape[2]))
        else:
            X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], X_train.shape[2], 1))
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5

        # We make three label vectors for training. positive_y is the label vector for real samples, with value 1.
        # negative_y is the label vector for generated samples, with value -1. The dummy_y vector is passed to the
        # gradient_penalty loss function and is not used.
        positive_y = np.ones((batch_size, 1), dtype=np.float32)
        negative_y = -positive_y
        if self.type in ['improved_wgan','optim']:
            dummy_y = np.zeros((batch_size, 1), dtype=np.float32)

        self.discriminator_losses = []
        self.generator_losses = []
        output_dir = '../log_'+self.type

        for epoch in range(epochs):
            np.random.shuffle(X_train)
            print("Epoch: ", epoch)
            print("Number of batches: ", int(X_train.shape[0] // batch_size))
            discriminator_loss = []
            generator_loss = []
            minibatches_size = batch_size * self.n_critic

            for i in range(int(X_train.shape[0] // (batch_size * self.n_critic))):

                # ---------------------
                #  Train Discriminator
                # ---------------------
                discriminator_minibatches = X_train[i * minibatches_size:(i + 1) * minibatches_size]
                for j in range(self.n_critic):

                    image_batch = discriminator_minibatches[j * batch_size:(j + 1) * batch_size]
                    noise = np.random.rand(batch_size, 100).astype(np.float32)
                    if self.type in ['gan','wgan']:
                        discriminator_loss.append(self.parallel_discriminator_model.train_on_batch([image_batch, noise],
                                                  [positive_y, negative_y]))
                    elif self.type in ['improved_wgan','optim']:
                        discriminator_loss.append(self.parallel_discriminator_model.train_on_batch([image_batch, noise],
                                                  [positive_y, negative_y, dummy_y]))

                    if self.type == 'wgan':
                        # Clip discriminator weights
                        for l in self.parallel_discriminator_model.layers:
                            weights = l.get_weights()
                            weights = [np.clip(w, -self.clip_value, self.clip_value) for w in weights]
                            l.set_weights(weights)

                # ---------------------
                #  Train Generator
                # ---------------------
                noise = np.random.normal(0, 1, (batch_size, 100))
                generator_loss.append(self.parallel_generator_model.train_on_batch(noise, positive_y))

                # If at save interval => save generated image samples
                if epoch % save_interval == 0:
                    self.generate_images(output_dir, epoch)
                    self.generator.save_weights(os.path.join(output_dir, 'epoch_{}_g.h5'.format(epoch)))
                    self.discriminator.save_weights(os.path.join(output_dir, 'epoch_{}_d.h5'.format(epoch)))

            self.discriminator_losses.append(discriminator_loss)
            self.generator_losses.append(generator_loss)

if __name__ == '__main__':
    gan = GANGPU('gan')
    gan.train(100, batch_size=BATCH_SIZE, save_interval=1)

这是完整的回溯:
Traceback (most recent call last):
  File "gangpu.py", line 278, in <module>
    gan = GANGPU('gan')
  File "gangpu.py", line 96, in __init__
    parallel_discriminator_model = multi_gpu_model(discriminator_model, gpus=2)
  File "/n/home06/koshiba/.conda/envs/Keras7/lib/python3.6/site-packages/keras/utils/multi_gpu_utils.py", line 189, in multi_gpu_model
    return Model(model.inputs, merged)
  File "/n/home06/koshiba/.conda/envs/Keras7/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
    return func(*args, **kwargs)
  File "/n/home06/koshiba/.conda/envs/Keras7/lib/python3.6/site-packages/keras/engine/topology.py", line 1829, in __init__
    'Layer names: ', all_names)
RuntimeError: ('The name "Discriminator" is used 2 times in the model. All layer names should be unique. Layer names: ', ['input_3', 'input_4', 'lambda_3', 'lambda_4', 'lambda_5', 'lambda_6', 'model_3', 'Discriminator', 'Discriminator'])

最佳答案

这只是一个猜测,我无法自己进行测试,但是对我来说,您在cpu上使用tf.device构建模型,然后尝试调用multi_gpu便捷函数对我来说似乎很奇怪。因此,您可以尝试不放置任何设备。

关于python - 使用Keras : All layer names should be unique for discriminator在GPU上训练GAN,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49712244/

10-08 22:44