我有以下数据框
x <- read.table(text = " id1 id2 val1 val2
1 a x 1 9
2 a x 2 4
3 a y 3 5
4 a y 4 9
5 b x 1 7
6 b y 4 4
7 b x 3 9
8 b y 2 8", header = TRUE)
我想计算按id1和id2分组的val1和val2的平均值,并同时计算每个id1-id2组合的行数。我可以分别执行每个计算:
# calculate mean
aggregate(. ~ id1 + id2, data = x, FUN = mean)
# count rows
aggregate(. ~ id1 + id2, data = x, FUN = length)
为了在一次通话中进行两种计算,我尝试了
do.call("rbind", aggregate(. ~ id1 + id2, data = x, FUN = function(x) data.frame(m = mean(x), n = length(x))))
但是,我得到一个乱码输出和一个警告:
# m n
# id1 1 2
# id2 1 1
# 1.5 2
# 2 2
# 3.5 2
# 3 2
# 6.5 2
# 8 2
# 7 2
# 6 2
# Warning message:
# In rbind(id1 = c(1L, 2L, 1L, 2L), id2 = c(1L, 1L, 2L, 2L), val1 = list( :
# number of columns of result is not a multiple of vector length (arg 1)
我可以使用plyr包,但是当数据集的大小增加时,我的数据集很大,并且plyr非常慢(几乎无法使用)。
如何在一次调用中使用
aggregate
或其他函数执行多项计算? 最佳答案
您可以一步一步完成所有步骤并获得正确的标签:
> aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) )
# id1 id2 val1.mn val1.n val2.mn val2.n
# 1 a x 1.5 2.0 6.5 2.0
# 2 b x 2.0 2.0 8.0 2.0
# 3 a y 3.5 2.0 7.0 2.0
# 4 b y 3.0 2.0 6.0 2.0
这将创建一个具有两个id列和两个矩阵列的数据框:
str( aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) ) )
'data.frame': 4 obs. of 4 variables:
$ id1 : Factor w/ 2 levels "a","b": 1 2 1 2
$ id2 : Factor w/ 2 levels "x","y": 1 1 2 2
$ val1: num [1:4, 1:2] 1.5 2 3.5 3 2 2 2 2
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mn" "n"
$ val2: num [1:4, 1:2] 6.5 8 7 6 2 2 2 2
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr "mn" "n"
如下面的@ lord.garbage所指出的,可以使用
do.call(data.frame, ...)
将其转换为带有“简单”列的数据框。str( do.call(data.frame, aggregate(. ~ id1+id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) ) )
)
'data.frame': 4 obs. of 6 variables:
$ id1 : Factor w/ 2 levels "a","b": 1 2 1 2
$ id2 : Factor w/ 2 levels "x","y": 1 1 2 2
$ val1.mn: num 1.5 2 3.5 3
$ val1.n : num 2 2 2 2
$ val2.mn: num 6.5 8 7 6
$ val2.n : num 2 2 2 2
这是LHS上多个变量的语法:
aggregate(cbind(val1, val2) ~ id1 + id2, data = x, FUN = function(x) c(mn = mean(x), n = length(x) ) )