【题目链接】

【题目大意】

从西到东的坐标轴\([1,n]\)上有\(n\)个海拔互不相同的城市,每两个城市之间的距离定义为\(dis(i,j)=|h_i-h_j|\)

\(A\)和小\(B\)轮着开车,小\(A\)先开始开车。两个人的车一直向东行驶,并且最多行驶\(X\)公里。

\(A\)和小\(B\)开车的习惯不一样。如果开车从西到东,小\(A\)每一次都会找到后面海拔和当前城市相差次小的城市,小\(B\)则会选择最小值

如果多个满足条件的城市,那么选择海拔较低的。

现在请回答两个问题:

【思路要点】

【代码】

#include <bits/stdc++.h>

#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define REP(i, s, t) for (int i = s; i <= t; i++)
#define PER(i, s, t) for (int i = s; i >= t; i--)
#define FI first
#define SE second
#define pb push_back
#define mp make_pair
#define lb lower_bound
#define ub upper_bound

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

template <class T>
void rd(T& x) {
  x = 0; char ch = 0; int f = 1;
  for (; !isdigit(ch); ch = getchar())
    if (ch == '-')
      f = -1;
  for (; isdigit(ch); ch = getchar())
    x = x * 10 + ch - 48;
  x *= f;
}

template<class T>
void pr(T x){
  if (!x) {
    putchar('0');
    return;
  }
  if (x < 0)
    putchar('-'), x = -x;
  static int stk[25], top; top=0;
  while (x)
    stk[++top] = x % 10, x /=10;
  while(top)
    putchar(stk[top--] + 48);
}

const int N = 1e5 + 5;
const int MG = 27;
const double eps = 1e-7;

int n;
int h[N];
set<pii> st;
int ga[N], gb[N];
int f[MG][N][2], da[MG][N][2], db[MG][N][2];

// f[2 ^ i days][start at j city][first driver is (a = 0, b = 1)] to city
// da[2 ^ i days][start at j city][first driver is (a = 0, b = 1)] distance of a
// db[2 ^ i days][start at j city][first driver is (a = 0, b = 1)] distance of b

int getDis(int i, int j) {
  return abs(h[i] - h[j]);
}

bool equal(double x, double y) {
  return x - y <= eps;
}

void preWork() {
  st.insert(mp(inf, 0)), st.insert(mp(inf, 0));
  st.insert(mp(-inf, 0)), st.insert(mp(-inf, 0));
  h[0] = inf;
  for (int i = n; i >= 1; i--) {
    st.insert(mp(h[i], i));
    set<pii>::iterator it, it1, it2, it3, it4;
    it = st.find(mp(h[i], i));
    ++it; it1 = it; ++it; it2 = it;
    it = st.find(mp(h[i], i));
    --it; it3 = it; --it; it4 = it;
    if (getDis((*it1).SE, i) < getDis((*it3).SE, i)) {
      gb[i] = (*it1).SE;
      if (getDis((*it2).SE, i) < getDis((*it3).SE, i))
        ga[i] = (*it2).SE;
      else
        ga[i] = (*it3).SE;
    } else {
      gb[i] = (*it3).SE;
      if (getDis((*it1).SE, i) < getDis((*it4).SE, i))
        ga[i] = (*it1).SE;
      else
        ga[i] = (*it4).SE;
    }
  }
  for (int i = 1; i <= n; i++) {
    f[0][i][0] = ga[i], f[0][i][1] = gb[i];
    da[0][i][0] = getDis(i, ga[i]), da[0][i][1] = 0;
    db[0][i][0] = 0, db[0][i][1] = getDis(i, gb[i]);
  }
  for (int j = 1; j <= n; j++)
    for (int k = 0; k <= 1; k++) {
      f[1][j][k] = f[0][f[0][j][k]][k ^ 1];
      da[1][j][k] = da[0][j][k] + da[0][f[0][j][k]][k ^ 1];
      db[1][j][k] = db[0][j][k] + db[0][f[0][j][k]][k ^ 1];
    }
  for (int i = 2; i <= 24; i++)
    for (int j = 1; j <= n; j++)
      for (int k = 0; k <= 1; k++) {
        f[i][j][k] = f[i - 1][f[i - 1][j][k]][k];
        da[i][j][k] = da[i - 1][j][k] + da[i - 1][f[i - 1][j][k]][k];
        db[i][j][k] = db[i - 1][j][k] + db[i - 1][f[i - 1][j][k]][k];
      }
}

pii calc(int u, int x) {
  pii res = {0, 0};
  for (int i = 24; i >= 0; i--)
    if (f[i][u][0] && res.FI + res.SE + da[i][u][0] + db[i][u][0] <= x)
      res.FI += da[i][u][0], res.SE += db[i][u][0], u = f[i][u][0];
  return res;
}

void solve1() {
  int x0; rd(x0);
  pair<pii, int> res = mp(calc(1, x0), 1);
  for (int i = 2; i <= n; i++) {
    pii tmp = calc(i, x0);
    if (tmp.SE == 0)
      continue;
    else if ((res.FI.SE == 0) || (1.0 * tmp.FI / tmp.SE < 1.0 * res.FI.FI / res.FI.SE) || (equal(1.0 * tmp.FI / tmp.SE, 1.0 * res.FI.FI / res.FI.SE) && (h[res.FI.SE] < h[tmp.SE])))
      res = mp(tmp, i);
  }
  pr(res.SE), puts("");
}

void solve2() {
  int m; rd(m);
  while (m--) {
    int s0, x0; rd(s0), rd(x0);
    pii tmp = calc(s0, x0);
    pr(tmp.FI), putchar(' '), pr(tmp.SE), puts("");
  }
}

int main() {
#ifndef ONLINE_JUDGE
  freopen("a.in", "r", stdin);
  freopen("a.out", "w", stdout);
#endif
  rd(n);
  for (int i = 1; i <= n; i++)
    rd(h[i]);
  preWork();
  solve1(), solve2();
  return 0;
}
01-07 04:45