# This sample uses a UFF MNIST model to create a TensorRT Inference Engine
from random import randint
from PIL import Image
import numpy as np
import pycuda.driver as cuda
# This import causes pycuda to automatically manage CUDA context creation and cleanup.
import pycuda.autoinit
import tensorrt as trt
import time
import sys, os
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common
# You can set the logger severity higher to suppress messages (or lower to display more messages).
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
batch_size = 128
class ModelData(object):
MODEL_FILE = os.path.join(os.path.dirname(__file__), "model2/frozen_model.uff")
INPUT_NAME ="input_1"
INPUT_SHAPE = (3, 256, 256)
OUTPUT_NAME = 'predictions/Softmax'
DTYPE = trt.float32
def build_engine(model_file):
# For more information on TRT basics, refer to the introductory samples.
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.UffParser() as parser:
builder.max_batch_size = batch_size
builder.max_workspace_size = common.GiB(1)
# Parse the Uff Network
parser.register_input(ModelData.INPUT_NAME, ModelData.INPUT_SHAPE)
parser.register_output(ModelData.OUTPUT_NAME)
parser.parse(model_file, network)
# Build and return an engine.
return builder.build_cuda_engine(network)
# Loads a test case into the provided pagelocked_buffer.
def load_normalized_test_case(data_path, pagelocked_buffer, case_num=randint(0, 9)):
# test_case_path = os.path.join(data_path, str(case_num) + ".pgm")
# Flatten the image into a 1D array, normalize, and copy to pagelocked memory.
def normalize_image(image):
# Resize, antialias and transpose the image to CHW.
c, h, w = ModelData.INPUT_SHAPE
return np.asarray(image.resize((w, h), Image.ANTIALIAS)).transpose([2, 0, 1]).astype(trt.nptype(ModelData.DTYPE))
test_case_path = "lena.jpg"
img = normalize_image(Image.open(test_case_path))
img_array = []
for i in range(batch_size):
img_array.append(img)
img_array = np.array(img_array, dtype=trt.nptype(ModelData.DTYPE))
img_array = img_array.ravel()
np.copyto(pagelocked_buffer, img_array)
return case_num
def main():
# data_path = common.find_sample_data(description="Runs an MNIST network using a UFF model file", subfolder="mnist")
data_path = "/home/bjxiangboren/tools/TensorRT-5.0.2.6/data/mnist/"
model_file = ModelData.MODEL_FILE
# with open("inception_batch.engine", "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
# engine = runtime.deserialize_cuda_engine(f.read())
with build_engine(model_file) as engine:
# Build an engine, allocate buffers and create a stream.
# For more information on buffer allocation, refer to the introductory samples.
with open("inception_batch.engine", "wb") as f:
f.write(engine.serialize())
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
with engine.create_execution_context() as context:
case_num = load_normalized_test_case(data_path, pagelocked_buffer=inputs[0].host)
# For more information on performing inference, refer to the introductory samples.
# The common.do_inference function will return a list of outputs - we only have one in this case.
while True:
start_time = time.time()
[output] = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream, batch_size=batch_size)
end_time = time.time()
print("time dis is %s" % (end_time - start_time))
# output = output.reshape((30,1001))
# print output
# print output.shape
# print np.argmax(output, axis=1)
# pred = np.argmax(output)
# print("Test Case: " + str(case_num))
# print("Prediction: " + str(pred))
if __name__ == '__main__':
main()
1、首先将pb转为uff格式的模型
python /usr/lib/python3.5/dist-packages/uff/bin/convert_to_uff.py --input_file models/lenet5.pb
2、使用trt engine加速
这个加速还是挺明显的,但转换后的模型无法使用tfservign了,只能用tensorrt自己的engine。
参考:https://devtalk.nvidia.com/default/topic/1044466/tensorrt/uff-inference-time-large-than-pb-time-when-process-vgg-19/
https://blog.csdn.net/zong596568821xp/article/details/86077553
https://blog.csdn.net/g11d111/article/details/92061884