我只想用一只蟒蛇来处决达格。当我试着测试时,它工作得很好,当我试着在没有芹菜执行器的情况下进行气流测试时,它也工作得很好。
但当我尝试在与芹菜执行器一起运行的气流上回填时失败,没有真正的描述性错误:

airflow@ip:/home/admin$ airflow backfill REDSHIFT3 -s 2017-05-10
[2017-05-22 14:41:14,373] {__init__.py:57} INFO - Using executor CeleryExecutor
[2017-05-22 14:41:14,432] {driver.py:120} INFO - Generating grammar tables from /usr/lib/python2.7/lib2to3/Grammar.txt
[2017-05-22 14:41:14,452] {driver.py:120} INFO - Generating grammar tables from /usr/lib/python2.7/lib2to3/PatternGrammar.txt
[2017-05-22 14:41:14,616] {models.py:167} INFO - Filling up the DagBag from /usr/local/airflow/dags
[2017-05-22 14:41:14,994] {models.py:1126} INFO - Dependencies all met for <TaskInstance: REDSHIFT3.get_data_redshift 2017-05-10 00:00:00 [scheduled]>
[2017-05-22 14:41:15,000] {base_executor.py:50} INFO - Adding to queue: airflow run REDSHIFT3 get_data_redshift 2017-05-10T00:00:00 --pickle 81 --local
[2017-05-22 14:41:19,893] {celery_executor.py:78} INFO - [celery] queuing (u'REDSHIFT3', u'get_data_redshift', datetime.datetime(2017, 5, 10, 0, 0)) through celery, queue=default
[2017-05-22 14:41:20,598] {models.py:4024} INFO - Updating state for <DagRun REDSHIFT3 @ 2017-05-10 00:00:00: backfill_2017-05-10T00:00:00, externally triggered: False> considering 1 task(s)
[2017-05-22 14:41:20,607] {jobs.py:1978} INFO - [backfill progress] | finished run 0 of 1 | tasks waiting: 0 | succeeded: 0 | kicked_off: 1 | failed: 0 | skipped: 0 | deadlocked: 0 | not ready: 0
[2017-05-22 14:41:24,954] {jobs.py:1725} ERROR - Executor reports task instance <TaskInstance: REDSHIFT3.get_data_redshift 2017-05-10 00:00:00 [queued]> finished (failed) although the task says its queued. Was the task killed externally?
[2017-05-22 14:41:24,954] {models.py:1417} ERROR - Executor reports task instance <TaskInstance: REDSHIFT3.get_data_redshift 2017-05-10 00:00:00 [queued]> finished (failed) although the task says its queued. Was the task killed externally?
None
[2017-05-22 14:41:24,954] {models.py:1441} INFO - Marking task as FAILED.
[2017-05-22 14:41:25,037] {models.py:1462} ERROR - Executor reports task instance <TaskInstance: REDSHIFT3.get_data_redshift 2017-05-10 00:00:00 [queued]> finished (failed) although the task says its queued. Was the task killed externally?
[2017-05-22 14:41:25,042] {jobs.py:1690} ERROR - Task instance <TaskInstance: REDSHIFT3.get_data_redshift 2017-05-10 00:00:00 [failed]> failed
[2017-05-22 14:41:25,044] {models.py:4024} INFO - Updating state for <DagRun REDSHIFT3 @ 2017-05-10 00:00:00: backfill_2017-05-10T00:00:00, externally triggered: False> considering 1 task(s)
[2017-05-22 14:41:25,047] {models.py:4064} INFO - Marking run <DagRun REDSHIFT3 @ 2017-05-10 00:00:00: backfill_2017-05-10T00:00:00, externally triggered: False> failed
[2017-05-22 14:41:25,087] {jobs.py:1978} INFO - [backfill progress] | finished run 1 of 1 | tasks waiting: 0 | succeeded: 0 | kicked_off: 0 | failed: 1 | skipped: 0 | deadlocked: 0 | not ready: 0
Traceback (most recent call last):
  File "/usr/local/bin/airflow", line 28, in <module>
    args.func(args)
  File "/usr/local/lib/python2.7/dist-packages/airflow/bin/cli.py", line 167, in backfill
    pool=args.pool)
  File "/usr/local/lib/python2.7/dist-packages/airflow/models.py", line 3330, in run
    job.run()
  File "/usr/local/lib/python2.7/dist-packages/airflow/jobs.py", line 200, in run
    self._execute()
  File "/usr/local/lib/python2.7/dist-packages/airflow/jobs.py", line 2021, in _execute
    raise AirflowException(err)
airflow.exceptions.AirflowException: ---------------------------------------------------
Some task instances failed:
set([(u'REDSHIFT3', u'get_data_redshift', datetime.datetime(2017, 5, 10, 0, 0))])

这是我要执行的DAG:
from __future__ import print_function
from builtins import range
import airflow
from pprint import pprint
from airflow.operators.bash_operator import BashOperator
from airflow.hooks.postgres_hook import PostgresHook
from airflow.operators.python_operator import PythonOperator
from airflow.models import DAG

import time
from pprint import pprint

args = {
    'owner': 'airflow',
    'start_date': airflow.utils.dates.days_ago(2)
}

dag = DAG(
dag_id='REDSHIFT3', default_args=args,
    schedule_interval=None)

def get_data(ds, **kwargs):
    pprint(kwargs)

run_this = PythonOperator(
    task_id='get_data_redshift',
    provide_context=True,
    python_callable=get_data,
    dag=dag)

最佳答案

嘿,我有一个相关的问题-同样的错误,但不是在回填时。当我的集群在持续的高负载下(>50个工人,同时运行100个任务)时,我的数据库达到了最大CPU使用率。
对我来说,这是因为我的burstable(t2)RDS实例耗尽了CPU资源和限制。设置更大的实例类型解决了这个问题。
即使你不在AWS上,我也会反复检查你的数据库没有解决像CPU或I/O这样的资源约束,我猜这会导致一个竞争条件,在这个条件下调度器试图改变TaskistStand的状态,并在任务提交数据库状态之前将任务消息发送到消息队列。希望能帮上忙。

关于python - 即使测试正常, Airflow 回填作业仍失败,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/44116213/

10-16 17:10