我尝试在急切模式下使用Tensorflow计算梯度,但是
tf.GradientTape()仅返回None值。我不明白为什么。
在update_policy()函数中计算渐变。
该行的输出:
grads = tape.gradient(loss, self.model.trainable_variables)
是
{list}<class 'list'>:[None, None, ... ,None]
这是代码。
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
import numpy as np
tf.enable_eager_execution()
print(tf.executing_eagerly())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
set_session(sess)
class PGEagerAtariNetwork:
def __init__(self, state_space, action_space, lr, gamma):
self.state_space = state_space
self.action_space = action_space
self.gamma = gamma
self.model = tf.keras.Sequential()
# Conv
self.model.add(
tf.keras.layers.Conv2D(filters=32, kernel_size=[8, 8], strides=[4, 4], activation='relu',
input_shape=(84, 84, 4,),
name='conv1'))
self.model.add(
tf.keras.layers.Conv2D(filters=64, kernel_size=[4, 4], strides=[2, 2], activation='relu', name='conv2'))
self.model.add(
tf.keras.layers.Conv2D(filters=128, kernel_size=[4, 4], strides=[2, 2], activation='relu', name='conv3'))
self.model.add(tf.keras.layers.Flatten(name='flatten'))
# Fully connected
self.model.add(tf.keras.layers.Dense(units=512, activation='relu', name='fc1'))
self.model.add(tf.keras.layers.Dropout(rate=0.4, name='dr1'))
self.model.add(tf.keras.layers.Dense(units=256, activation='relu', name='fc2'))
self.model.add(tf.keras.layers.Dropout(rate=0.3, name='dr2'))
self.model.add(tf.keras.layers.Dense(units=128, activation='relu', name='fc3'))
self.model.add(tf.keras.layers.Dropout(rate=0.1, name='dr3'))
# Logits
self.model.add(tf.keras.layers.Dense(units=self.action_space, activation=None, name='logits'))
self.model.summary()
# Optimizer
self.optimizer = tf.train.AdamOptimizer(learning_rate=lr)
def get_probs(self, s):
s = s[np.newaxis, :]
logits = self.model.predict(s)
probs = tf.nn.softmax(logits).numpy()
return probs
def update_policy(self, s, r, a):
with tf.GradientTape() as tape:
logits = self.model.predict(s)
policy_loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=a, logits=logits)
policy_loss = policy_loss * tf.stop_gradient(r)
loss = tf.reduce_mean(policy_loss)
grads = tape.gradient(loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
最佳答案
您的模型中没有前进通道。 Model.predict()
方法返回numpy()
数组,而无需点按正向传递。看一下这个例子:
给定以下数据和模型:
import tensorflow as tf
import numpy as np
x_train = tf.convert_to_tensor(np.ones((1, 2), np.float32), dtype=tf.float32)
y_train = tf.convert_to_tensor([[0, 1]])
model = tf.keras.models.Sequential([tf.keras.layers.Dense(2, input_shape=(2, ))])
首先我们使用
predict()
:with tf.GradientTape() as tape:
logits = model.predict(x_train)
print('`logits` has type {0}'.format(type(logits)))
# `logits` has type <class 'numpy.ndarray'>
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_train, logits=logits)
reduced = tf.reduce_mean(xentropy)
grads = tape.gradient(reduced, model.trainable_variables)
print('grads are: {0}'.format(grads))
# grads are: [None, None]
现在我们使用模型的输入:
with tf.GradientTape() as tape:
logits = model(x_train)
print('`logits` has type {0}'.format(type(logits)))
# `logits` has type <class 'tensorflow.python.framework.ops.EagerTensor'>
xentropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_train, logits=logits)
reduced = tf.reduce_mean(xentropy)
grads = tape.gradient(reduced, model.trainable_variables)
print('grads are: {0}'.format(grads))
# grads are: [<tf.Tensor: id=2044, shape=(2, 2), dtype=float32, numpy=
# array([[ 0.77717704, -0.777177 ],
# [ 0.77717704, -0.777177 ]], dtype=float32)>, <tf.Tensor: id=2042,
# shape=(2,), dtype=float32, numpy=array([ 0.77717704, -0.777177 ], dtype=float32)>]
因此,请使用模型的
__call__()
(即model(x)
)进行前向传递,而不要使用predict()
。