所以我在这里遇到这段代码的麻烦:
import numpy as np
import matplotlib.pyplot as plt
import scipy as sy
import pylab as plb
def oscDecay(x, A, B, C, tau, omega):
return A*(1+B*np.cos(omega*x))*np.exp(-1*x**2/(2*tau**2))+C
def LMfit(func, x, y, p0, sig):
#Fits data to non-linear curve using Levenberg-Marquart Method
#Inputs: func = the function you are fitting data to
# x, y = data set
# p0 = tuple containing inital guesses for fitting parameters
# sig = uncertainty in values
#Outputs: nlfit = array containing optimal values for fitting parameters
# nlcov = two dimensional array (square root of diagonals contain
# uncertainty in fitting parameters)
nlfit, nlpcov = sy.optimize.curve_fit(func, x, y, p0, sig)
return nlfit, nlpcov
data=np.loadtxt('testing.txt', skiprows=4)
x=data[:, 0]
y=data[:, 1]
sig=data[:, 2]
#intial parameters
A0=16.5
B0=0.57
C0=17
tau0=30
omega0=7
p0=(A0, B0, C0, tau0, omega0)
nlfit, nlpcov = LMfit(oscDecay, x, y, p0, sig)
当我尝试运行它时,出现以下错误消息:
nlfit,nlpcov = sy.optimize.curve_fit(oscDecay,x,y,p0,sig)。
AttributeError:“模块”对象没有属性“优化”
我不确定这是什么意思,因为我的软件已经为我提供了scipy.optimize。
最佳答案
在您的情况下,导入似乎未按照评论者的说明进行。
我必须制作一个合成样本来测试您的代码。我只是省略了西格玛,并且一切正常(使用Ipython笔记本)。
import numpy as np
import matplotlib.pyplot as p
from scipy import optimize as opt
%matplotlib inline
def oscDecay(x, A, B, C, tau, omega):
return A*(1+B*np.cos(omega*x))*np.exp(-1*x**2/(2*tau**2))+C
# make an example of data with some experimental noise
def oscDecayexp(x, A, B, C, tau, omega):
rand=np.random.rand(len(x))
return A*(1+(B+rand/10)*np.cos(omega*x))*np.exp(-1*x**2/(2*tau**2))+C
def LMfit(func, x, y, p0 ,sig=None):
#Fits data to non-linear curve using Levenberg-Marquart Method
#Inputs: func = the function you are fitting data to
# x, y = data set
# p0 = tuple containing inital guesses for fitting parameters
# sig = uncertainty in values
#Outputs: nlfit = array containing optimal values for fitting parameters
# nlcov = two dimensional array (square root of diagonals contain
# uncertainty in fitting parameters)
nlfit, nlpcov = opt.curve_fit(func, x, y, p0, sig)
return nlfit, nlpcov
#intial parameters
A0=16.5
B0=0.57
C0=17
tau0=30
omega0=7
x=np.arange(0,80,0.02)
y=oscDecayexp(x,A0,B0,C0,tau0,omega0)
p.figure(figsize=(12,8))
p.plot(x, oscDecay(x,A0,B0,C0,tau0,omega0)) # blue
p.plot(x, oscDecayexp(x,A0,B0,C0,tau0,omega0),lw=0.5) #green
p0=(A0, B0, C0, tau0, omega0)
# scipy.optimize.curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, **kw)
nlfit, nlpcov = LMfit(oscDecay, x, y, p0 )
print nlfit
输出:
关于python - Python(scipy.optimize.curve_fit问题),我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/37107627/