A .Cake Cutting Problem
-------------------零AC,打扰了
B .Function
des:f(x) = f(x-1) + 1. f(0) = k. 给出x、k,求f(x)。
sol:签到题,好翻译好做。直接两数相加没什么好说的。
- 数学View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; int main() { int t, a, b; scanf("%d", &t); while (t--) { scanf("%d%d", &a, &b); printf("%d\n", a + b); } return 0; }
C .Kira Yoshikage's Chessboard
des:给一个n * m的棋盘,问在至少有一个格子为free的情况下最多能放多少个马(free的意思是该格子没马且别的马无法一步到达该格子)。
sol:若棋盘小于等于3 * 3,或者min(n, m) == 1,答案为n * m - 1;否则若min(n, m) == 2,答案为n * m - 2; 否则答案为n * m - 3;
- 贪心View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; int main() { int t, n, m; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); if (n > m) swap(n, m); if (n == 1) printf("%d\n", m - 1); else if (n == 2) { if (m <= 3) printf("%d\n", n * m - 1); else printf("%d\n", n * m - 2); } else { if (m == 3) puts("8"); else printf("%d\n", n * m - 3); } } return 0; }
D .Special Graph Isomorphism
des:给定两个点数,边数相等的图,每个点的度数为2,且边为无权双向边。判断这两个图是否同构。
sol:看了用并查集的解法,感觉代码懂了,但是对题目的理解还不是很透彻。这两个图必由数个环构成。判断环的大小相等即可。
- 并查集View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; int a[MAXN], b[MAXN]; int aa[MAXN], bb[MAXN]; int aaa[MAXN], bbb[MAXN]; int find(int* c, int i) { if (c[i] == -1) return i; return c[i] = find(c, c[i]); } int main() { int t, n, m; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); memset(a, -1, sizeof(int) * (n + 1)); memset(b, -1, sizeof(int) * (n + 1)); memset(aaa, 0, sizeof(int) * (n + 1)); memset(bbb, 0, sizeof(int) * (n + 1)); for (int i = 1; i <= n; i++) aa[i] = bb[i] = 1; for (int i = 1; i <= m; i++) { int u, v; scanf("%d%d", &u, &v); int fu = find(a, u); int fv = find(a, v); if (fu != fv) { a[fu] = fv; aa[fv] += aa[fu]; } } for (int i = 1; i <= m; i++) { int u, v; scanf("%d%d", &u, &v); int fu = find(b, u); int fv = find(b, v); if (fu != fv) { b[fu] = fv; bb[fv] += bb[fu]; } } for (int i = 1; i <= n; i++) { if (a[i] == -1) aaa[aa[i]] ++; if (b[i] == -1) bbb[bb[i]] ++; } bool ok = true; for (int i = 1; i <= n; i++) if (aaa[i] != bbb[i]) ok = false; puts(ok ? "YES" : "NO"); } return 0; }
由于题目不是很懂,所以变量名也比较随意了。
E .Bang!
des:有n个怪物需要被消灭。第i个怪物的生命值为a_i。可以消耗3点体力造成5点伤害或者消耗1点体力造成1点伤害,求击杀n个怪物最少体力消耗。
sol:贪心:先五点五点打,最后如果血量少于3就一点一点打。
- 贪心View Code
#include "bits/stdc++.h" using namespace std; #define debug puts("what the fuck"); typedef long long LL; typedef pair<int, int> PII; int main() { int t, n, m; scanf("%d", &t); while (t--) { int sum = 0; scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &m); sum += m / 5 * 3; if (m % 5 < 3) sum += m % 5; else sum += 3; } printf("%d\n", sum); } return 0; }
F .The villagers' election
des:有n个人,其中一些人相互认识,可以理解成n个点m条边。每个人可以代表自己和认识的人成为村委。问每个人都被奇数个人代表的方案数。
sol:这题的n很小,只有20,所以可以二进制枚举,另外可以再加一个二进制位运算优化。dfs应该也可以吧。
- 二进制枚举+位运算View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 30; int edge[MAXN]; int lowbit(int i) {return i & -i;} int count(int k) { int cnt = 0; while (k) { cnt ++; k -= lowbit(k); } return cnt; } int main() { int t, n, m; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) edge[i] = 1 << i - 1; for (int i = 1; i <= m; i++) { int u, v; scanf("%d%d", &u, &v); edge[u] |= 1 << v - 1; edge[v] |= 1 << u - 1; } int sum = 0; for (int i = 1; i < (1 << n); i++) { bool ok = true; for (int j = 1; j <= n; j++) { if (count(i & edge[j]) % 2 == 0) { ok = false; break; } } if (ok) sum++; } printf("%d\n", sum); } return 0; }
G .Big Bridge
-------------------抱歉,打扰了
H .Don's candy
des:
需要写一种数据结构来维护三种操作。
1 x :插入一个x
2 x :删除一个x
3 x :查询第x小的数
sol:官方题解中提到了几种解法:树状数组、线段树、平衡树、红黑树。。。比赛的时候我用的是fhq-treap后来又想到了线段树解法和树状数组解法。红黑树,这辈子都不可能手写红黑树的
- fhq-treapView Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; struct Treap { int val, rand; int size; int lson, rson; } node[MAXN]; int root, tot; int add_node(int v) { int i = ++tot; node[i].val = v; node[i].rand = rand(); node[i].lson = node[i].rson = 0; node[i].size = 1; return i; } void split(int rt, int& a, int& b, int v) { if (rt == 0) { a = b = 0; return; } if (node[rt].val <= v) { a = rt; split(node[rt].rson, node[a].rson, b, v); node[a].size = node[node[a].lson].size + node[node[a].rson].size + 1; } else { b = rt; split(node[rt].lson, a, node[b].lson, v); node[b].size = node[node[b].lson].size + node[node[b].rson].size + 1; } } void merge(int& rt, int a, int b) { if (a == 0 || b == 0) { rt = a + b; return; } if (node[a].rand < node[b].rand) { rt = a; merge(node[rt].rson, node[a].rson, b); node[rt].size = node[node[rt].lson].size + node[node[rt].rson].size + 1; } else { rt = b; merge(node[rt].lson, a, node[b].lson); node[rt].size = node[node[rt].lson].size + node[node[rt].rson].size + 1; } } void insert(int v) { int x, y; split(root, x, y, v); merge(x, x, add_node(v)); merge(root, x, y); } void erase(int v) { int x, y, z; split(root, root, z, v); split(root, x, y, v - 1); merge(y, node[y].lson, node[y].rson); merge(root, x, y); merge(root, root, z); } int get_rank(int i, int k) { int sz = node[node[i].lson].size; if (k <= sz) return get_rank(node[i].lson, k); if (k == sz + 1) return node[i].val; if (k > sz + 1) return get_rank(node[i].rson, k - sz - 1); } int main() { int t, n; srand(time(NULL)); scanf("%d", &t); while (t--) { root = 0, tot = 0; scanf("%d", &n); for (int i = 1; i <= n; i++) { int opt, x; scanf("%d%d", &opt, &x); if (opt == 1) insert(x); if (opt == 2) erase(x); if (opt == 3) printf("%d\n", get_rank(root, x)); } } return 0; }
优点:因为引入了随机数,所以不可能构造出卡掉treap的数据,如果有,就再交一次。
- 线段树View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; struct Node { int l, r; int sum; } segTree[MAXN * 4]; void build(int i, int l, int r) { segTree[i].l = l; segTree[i].r = r; segTree[i].sum = 0; if (l == r) return; int mid = l + r >> 1; build(i << 1, l, mid); build(i << 1 | 1, mid + 1, r); } void add(int i, int ind, int val) { if (segTree[i].l == segTree[i].r) { segTree[i].sum = max(segTree[i].sum + val, 0); // 防止取走魔法口袋中不存在的糖果,然后发现没有这样的数据 return; } int mid = segTree[i].l + segTree[i].r >> 1; if (ind <= mid) add(i << 1, ind, val); else add(i << 1 | 1, ind, val); segTree[i].sum = segTree[i << 1].sum + segTree[i << 1 | 1].sum; } int get_rank(int i, int k) { if (segTree[i].l == segTree[i].r) return segTree[i].l; if (k <= segTree[i << 1].sum) return get_rank(i << 1, k); else return get_rank(i << 1 | 1, k - segTree[i << 1].sum); } int main() { int t, n; scanf("%d", &t); while (t--) { scanf("%d", &n); build(1, 1, 100000); for (int i = 1; i <= n; i++) { int opt, x; scanf("%d%d", &opt, &x); if (opt == 1) add(1, x, 1); if (opt == 2) add(1, x, -1); if (opt == 3) printf("%d\n", get_rank(1, x)); } } return 0; }
- 树状数组+二分View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; int c[MAXN]; int lowbit(int i) {return i & -i;} void add(int i, int v) { while (i < MAXN) { c[i] += v; i += lowbit(i); } } int sum(int i) { int res = 0; while (i > 0) { res += c[i]; i -= lowbit(i); } return res; } int get_rank(int k) { int l = 0, r = MAXN; while (l < r - 1) { int mid = l + r >> 1; if (sum(mid) < k) l = mid; else r = mid; } return r; } int main() { int t, n; scanf("%d", &t); while (t--) { memset(c, 0, sizeof(c)); scanf("%d", &n); for (int i = 1; i <= n; i++) { int opt, x; scanf("%d%d", &opt, &x); if (opt == 1) add(x, 1); if (opt == 2) add(x, -1); if (opt == 3) printf("%d\n", get_rank(x)); } } return 0; }
这是我看标程之前自己写的树状数组,后来想想这样复杂度不是成了O(n*logn*logn),但是树状数组的常数是真优秀,比上面两份O(n * logn)的还快
- 树状数组内二分View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e5 + 10; int c[MAXN]; int lowbit(int i) {return i & -i;} void add(int i, int v) { while (i < MAXN) { c[i] += v; i += lowbit(i); } } int get_rank(int k) { int cnt = 0, number = 0; for (int i = 16; i >= 0; i--) { if (cnt + c[1 << i | number] < k) { cnt += c[1 << i | number]; number += 1 << i; } } return number + 1; } int main() { int t, n; scanf("%d", &t); while (t--) { memset(c, 0, sizeof(c)); scanf("%d", &n); for (int i = 1; i <= n; i++) { int opt, x; scanf("%d%d", &opt, &x); if (opt == 1) add(x, 1); if (opt == 2) add(x, -1); if (opt == 3) printf("%d\n", get_rank(x)); } } return 0; }
标程还是标程,最高效的解法。
I .extract
des:一个带数字的字符串,先输出里面数的个数,再按顺序输出所以数,给出每个字符串的长度
sol:有种东西叫快读,就是在字符串里提取数,稍微改改拿来做这题就正好了,字符串都不用存。
- 快读View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 100010; int a[MAXN], tot; inline bool read(int& n) { char c = getchar(); n = 0; while (c < '0' || c > '9') { if (c == '\n') { n = -1; return false; } c = getchar(); } while (c >= '0' && c <= '9') { n = n * 10 + c - '0'; c = getchar(); } return c != '\n'; } int main() { int t, n, m; bool has_next; read(t); while (t--) { tot = 0; read(n); do { has_next = read(m); if (m != -1) a[++tot] = m; } while (has_next); printf("%d\n", tot); for (int i = 1; i < tot; i++) printf("%d ", a[i]); printf("%d\n", a[tot]); } return 0; }
写好快读再写主函数就很快乐了。
J .The long journey
des:求0到n - 2的全排列个数,t组测试数据
sol:a[i] = a[i - 1] * (i - 2) + 1
- 打表+排列组合View Code
#include "bits/stdc++.h" using namespace std; typedef long long LL; typedef pair<int, int> PII; const int MAXN = 1e7 + 10; const int MOD = 1e9 + 7; int a[MAXN]; void init() { a[2] = 1; for (int i = 3; i <= 1e7; i++) a[i] = (1LL * a[i - 1] * (i - 2) + 1) % MOD; } int main() { int t, n; init(); scanf("%d", &t); while (t--) { scanf("%d", &n); printf("%d\n", a[n]); } return 0; }