我已经基于here中的代码编写了一个简单的脚本

我只需要显示点,不需要线。

下面的脚本正确显示了点,但我希望看到点以可配置的方式(例如30fps)以更快的速度移动。

import matplotlib
matplotlib.use('TKAgg')

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import cnames
from matplotlib import animation

NbOfObjects = 3

fig = plt.figure()

ax = fig.add_axes([0, 0, 1, 1], projection='3d')
ax.axis('on')

ax.set_xlim((-1.5, 1.5))
ax.set_ylim((-1.5, 1.5))
ax.set_zlim((0, 1.5))

ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')

# set point-of-view: specified by (altitude degrees, azimuth degrees)
ax.view_init(30, 30)

# choose a different color for each trajectory
colors = plt.cm.jet(np.linspace(0, 1, NbOfObjects))

# set up points
pts = sum([ax.plot([], [], [], 'o', c=c)
           for c in colors], [])

data = [[[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 0.0, 0.0], [0.0, -1.0, 1.0], [-1.0, 1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [-1.0, -1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]],
        [[0.0, 0.0, 0.0], [-1.0, -1.0, 1.0], [1.0, 1.0, 1.0]]]


# initialization function: plot the background of each frame
def init():
    for pt in pts:
        pt.set_data([], [])
        pt.set_3d_properties([])

    return pts


def animate(i):

    print "i: ", i

    for pt, positon in zip (pts, data[i]):

        x = positon[0]
        y = positon[1]
        z = positon[2]

        pt.set_data(x, y)
        pt.set_3d_properties(z)

    fig.canvas.draw()

    return  pts

anim = animation.FuncAnimation(fig, animate, init_func=init, interval=1, frames=len(data), blit=True, repeat=False)

plt.show()



屏幕上帧的显示如何与animation.FuncAnimation中的“间隔”参数相关? (我无法在不到5秒的时间内显示50帧)
这种设计是否是长时间内以30fps的速度处理大量点(10+)的最佳方法? (“数据”在1小时的时间内会很大)。


我仍在研究各种示例,但没有一个示例显示简单的3D动画散点图。

谢谢。

最佳答案

the documentation


  kwarg包括repeatrepeat_delayintervalintervalinterval毫秒绘制一个新帧。 repeat控制帧序列完成后是否重复动画。 repeat_delay可选地在重复动画之前添加以毫秒为单位的延迟。


但是,这只会设置帧频的上限-如果绘制帧的时间太长,那么您会看到帧频变慢
如果您的点数量较多,则需要执行以下操作:

data = np.array(data)

# in init, get a single mpl_toolkits.mplot3d.art3d.Line3D object
# the comma is important!
pts, = ax.plot([], [], [], 'o', c=colors)

# in update()
pts.set_data(data[i,:,0], data[i,:,1])
pts.set_3d_properties(data[i,:,2])


这样就可以消除for循环

关于python - matplotlib-更快的帧率?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/39093656/

10-12 03:28