英特尔实感深度摄像头D435i。
我尝试捕获图像并将其另存为STL格式。
我使用英特尔提供的这个项目来完成此任务。
https://github.com/IntelRealSense/librealsense/releases/download/v2.29.0/Intel.RealSense.SDK.exe
在解决方案中,有一个名为PointCloud的应用程序。
我对应用程序进行了一些修改,以使图像清晰。
但是即使使用基本代码,结果也不是很令人满意。
我捕获了一个光滑的表面,但是结果上有很多小凸起。
我不知道问题是来自SDK还是来自相机。
我在MeshLab中检查结果,MeshLab是一个很棒的3D工具。
任何的想法 ?
结果(光滑的工作台表面):
这是我的代码C++(我仅添加了一些过滤器,但没有过滤器,我也遇到了同样的问题):
#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API
#include "example.hpp" // Include short list of convenience functions for rendering
#include <algorithm> // std::min, std::max
#include <iostream>
#include <Windows.h>
#include <imgui.h>
#include "imgui_impl_glfw.h"
#include <stdio.h>
#include <windows.h>
#include <conio.h>
#include "tchar.h"
// Helper functions
void register_glfw_callbacks(window& app, glfw_state& app_state);
int main(int argc, char * argv[]) try
{
::ShowWindow(::GetConsoleWindow(), SW_HIDE);
// Create a simple OpenGL window for rendering:
window app(1280, 720, "Capron 3D");
ImGui_ImplGlfw_Init(app, false);
bool capture = false;
HWND hWnd;
hWnd = FindWindow(NULL, _T("Capron 3D"));
ShowWindow(hWnd, SW_MAXIMIZE);
// Construct an object to manage view state
glfw_state app_state;
// register callbacks to allow manipulation of the pointcloud
register_glfw_callbacks(app, app_state);
app_state.yaw = 3.29;
app_state.pitch = 0;
// Declare pointcloud object, for calculating pointclouds and texture mappings
rs2::pointcloud pc;
// We want the points object to be persistent so we can display the last cloud when a frame drops
rs2::points points;
// Declare RealSense pipeline, encapsulating the actual device and sensors
rs2::pipeline pipe;
// Start streaming with default recommended configuration
pipe.start();
rs2::decimation_filter dec_filter;
rs2::spatial_filter spat_filter;
rs2::threshold_filter thres_filter;
rs2::temporal_filter temp_filter;
float w = static_cast<float>(app.width());
float h = static_cast<float>(app.height());
while (app) // Application still alive?
{
static const int flags = ImGuiWindowFlags_NoCollapse
| ImGuiWindowFlags_NoScrollbar
| ImGuiWindowFlags_NoSavedSettings
| ImGuiWindowFlags_NoTitleBar
| ImGuiWindowFlags_NoResize
| ImGuiWindowFlags_NoMove;
ImGui_ImplGlfw_NewFrame(1);
ImGui::SetNextWindowSize({ app.width(), app.height() });
ImGui::Begin("app", nullptr, flags);
// Set options for the ImGui buttons
ImGui::PushStyleColor(ImGuiCol_TextSelectedBg, { 1, 1, 1, 1 });
ImGui::PushStyleColor(ImGuiCol_Button, { 36 / 255.f, 44 / 255.f, 51 / 255.f, 1 });
ImGui::PushStyleColor(ImGuiCol_ButtonHovered, { 40 / 255.f, 170 / 255.f, 90 / 255.f, 1 });
ImGui::PushStyleColor(ImGuiCol_ButtonActive, { 36 / 255.f, 44 / 255.f, 51 / 255.f, 1 });
ImGui::PushStyleVar(ImGuiStyleVar_FrameRounding, 12);
ImGui::SetCursorPos({ 10, 10 });
if (ImGui::Button("Capturer", { 100, 50 }))
{
capture = true;
}
// Wait for the next set of frames from the camera
auto frames = pipe.wait_for_frames();
auto color = frames.get_color_frame();
// For cameras that don't have RGB sensor, we'll map the pointcloud to infrared instead of color
if (!color)
color = frames.get_infrared_frame();
// Tell pointcloud object to map to this color frame
pc.map_to(color);
auto depth = frames.get_depth_frame();
/*spat_filter.set_option(RS2_OPTION_FILTER_SMOOTH_DELTA, 50);
depth = spat_filter.process(depth);*/
spat_filter.set_option(RS2_OPTION_FILTER_SMOOTH_ALPHA, 1);
depth = spat_filter.process(depth);
spat_filter.set_option(RS2_OPTION_HOLES_FILL, 2);
depth = spat_filter.process(depth);
//temp_filter.set_option(RS2_OPTION_FILTER_SMOOTH_ALPHA, 1);
//depth = temp_filter.process(depth);
// Generate the pointcloud and texture mappings
points = pc.calculate(depth);
// Upload the color frame to OpenGL
app_state.tex.upload(color);
thres_filter.set_option(RS2_OPTION_MIN_DISTANCE, 0);
depth = thres_filter.process(depth);
// Draw the pointcloud
draw_pointcloud(int(w) / 2, int(h) / 2, app_state, points);
if (capture)
{
points.export_to_ply("My3DFolder\\new.ply", depth);
return EXIT_SUCCESS;
}
ImGui::PopStyleColor(4);
ImGui::PopStyleVar();
ImGui::End();
ImGui::Render();
}
return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n " << e.what() << std::endl;
MessageBox(0, "Erreur connexion RealSense. Veuillez vérifier votre caméra 3D.", "Capron Podologie", 0);
return EXIT_FAILURE;
}
catch (const std::exception & e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
最佳答案
我找到了答案,
我正在使用HolesFill过滤器。
//These lines
spat_filter.set_option(RS2_OPTION_HOLES_FILL, 2);
depth = spat_filter.process(depth);
孔填充算法是prédictif。它创建点,但是这些点的坐标并不完全正确。 spat_filter.set_option的第二个参数在1到5之间。我增加这个参数的次数越多,结果的噪音就越大。
如果删除这些行,则结果会更清晰。
但是这次我在结果上有很多漏洞。
关于c++ - 英特尔实感深度摄像头D435i的噪音和土丘,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/59054413/