在Google ML Engine的微调工作中,某些训练配置导致NaN损失,并因此导致错误。我希望能够忽略这些试验,并继续使用不同的参数进行微调。

我正在使用带有fail_on_nan_loss = False的NanTensorHook,当不执行任何并行试验时(maxParallelTrials:1),它在ML Engine中可以成功运行,但是在多个并行试验中(maxParallelTrials:3)则失败。

有人遇到过此错误吗?关于如何解决的任何想法?

这是我的配置文件:

trainingInput:
 scaleTier: CUSTOM
 masterType: standard
 workerType: standard
 parameterServerType: standard
 workerCount: 4
 parameterServerCount: 1
 hyperparameters:
   goal: MAXIMIZE
   maxTrials: 5
   maxParallelTrials: 3
   enableTrialEarlyStopping: False
   hyperparameterMetricTag: auc
   params:
   - parameterName: learning_rate
    type: DOUBLE
    minValue: 0.0001
    maxValue: 0.01
    scaleType: UNIT_LOG_SCALE
   - parameterName: optimizer
    type: CATEGORICAL
    categoricalValues:
    - Adam
    - Adagrad
    - Momentum
    - SGD
   - parameterName: batch_size
    type: DISCRETE
    discreteValues:
    - 128
    - 256
    - 512


这是我设置NanTensorHook的方法:

hook = tf.train.NanTensorHook(loss,fail_on_nan_loss=False)

train_op = tf.contrib.layers.optimize_loss(
    loss=loss, global_step=tf.train.get_global_step(),
    learning_rate=lr, optimizer=optimizer)

model_fn = tf.estimator.EstimatorSpec(mode=mode, loss=loss,
    eval_metric_ops=eval_metric_ops, train_op=train_op,
    training_hooks=[hook])


我收到的错误消息是:

Hyperparameter Tuning Trial #4 Failed before any other successful
trials were completed. The failed trial had parameters: optimizer=SGD,
batch_size=128, learning_rate=0.00075073617775056709, . The trial's ror
message was: The replica worker 1 exited with a non-zero status of 1.
Termination reason: Error. Traceback (most recent call last): [...]
File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 421, in
train_and_evaluate executor.run() File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 522, in run
getattr(self, task_to_run)() File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 532, in
run_worker return self._start_distributed_training() File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 715, in
_start_distributed_training saving_listeners=saving_listeners) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/estimator.py", line 352, in train
loss = self._train_model(input_fn, hooks, saving_listeners) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/estimator.py", line 891, in
_train_model _, loss = mon_sess.run([estimator_spec.train_op,
estimator_spec.loss]) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 546, in
run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1022,
in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1113,
in run raise six.reraise(*original_exc_info) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1098,
in run return self._sess.run(*args, **kwargs) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1178,
in run run_metadata=run_metadata)) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/basic_session_run_hooks.py", line
617, in after_run raise NanLossDuringTrainingError
NanLossDuringTrainingError: NaN loss during training. The replica
worker 3 exited with a non-zero status of 1. Termination reason: Error.
Traceback (most recent call last): [...] File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 421, in
train_and_evaluate executor.run() File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 522, in run
getattr(self, task_to_run)() File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 532, in
run_worker return self._start_distributed_training() File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/training.py", line 715, in
_start_distributed_training saving_listeners=saving_listeners) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/estimator.py", line 352, in train
loss = self._train_model(input_fn, hooks, saving_listeners) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/estimator/estimator.py", line 891, in
_train_model _, loss = mon_sess.run([estimator_spec.train_op,
estimator_spec.loss]) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 546, in
run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1022,
in run run_metadata=run_metadata) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1113,
in run raise six.reraise(*original_exc_info) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1098,
in run return self._sess.run(*args, **kwargs) File
"/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/monitored_session.py", line 1178,
in run run_metadata=run_metadata)) File "/usr/local/lib/python2.7/dist-
packages/tensorflow/python/training/basic_session_run_hooks.py", line
617, in after_run raise NanLossDuringTrainingError
NanLossDuringTrainingError: NaN loss during training.


谢谢大家!

最佳答案

超参数调整作业中的不同试验在运行时是隔离的。因此,为一个试验添加的钩子将不受其他试验中其他钩子的影响。

我怀疑该问题是由用于试验的超参数的特定组合引起的。为了确认这一点,我建议您针对失败的试验使用超参数值运行常规培训,然后查看错误是否会再次发生。

您能否将项目编号和职位ID发送给[email protected],我们可以进行更多调查。

08-25 08:39