这是我第一次使用CNN做某事,所以我可能做的很愚蠢-但无法弄清楚我哪里错了...

该模型似乎学习得很好,但是验证准确性并没有提高(甚至-在第一个时期之后),并且验证损失实际上随着时间而增加。看起来我不太适合(1个时期后?)-我们必须以其他方式离开吗?

typical network behaviour

我正在训练一个CNN网络-我有大约100k种各种植物(1000个类)的图像,并且想对ResNet50进行微调以创建一个多类分类器。图片大小各异,我像这样加载它们:

from keras.preprocessing import image

def path_to_tensor(img_path):
    # loads RGB image as PIL.Image.Image type
    img = image.load_img(img_path, target_size=(IMG_HEIGHT, IMG_HEIGHT))
    # convert PIL.Image.Image type to 3D tensor with shape (IMG_HEIGHT, IMG_HEIGHT, 3)
    x = image.img_to_array(img)
    # convert 3D tensor to 4D tensor with shape (1, IMG_HEIGHT, IMG_HEIGHT, 3) and return 4D tensor
    return np.expand_dims(x, axis=0)

def paths_to_tensor(img_paths):
    list_of_tensors = [path_to_tensor(img_path) for img_path in img_paths] #can use tqdm(img_paths) for data
    return np.vstack(list_of_tensors)enter code here

数据库很大(不适合内存),必须创建自己的生成器才能提供从磁盘读取和扩充的功能。 (我知道Keras具有.flow_from_directory()-但我的数据不是以这种方式结构化的-它只是将100k图像与100k元数据文件混合在一起的转储)。我可能应该已经创建了一个脚本来更好地构造它们,而不是创建自己的生成器,但是问题可能出在其他地方。

下面的生成器版本暂时不做任何扩充-只是重新缩放:
def generate_batches_from_train_folder(images_to_read, labels, batchsize = BATCH_SIZE):

    #Generator that returns batches of images ('xs') and labels ('ys') from the train folder
    #:param string filepath: Full filepath of files to read - this needs to be a list of image files
    #:param np.array: list of all labels for the images_to_read - those need to be one-hot-encoded
    #:param int batchsize: Size of the batches that should be generated.
    #:return: (ndarray, ndarray) (xs, ys): Yields a tuple which contains a full batch of images and labels.

    dimensions = (BATCH_SIZE, IMG_HEIGHT, IMG_HEIGHT, 3)

    train_datagen = ImageDataGenerator(
        rescale=1./255,
        #rotation_range=20,
        #zoom_range=0.2,
        #fill_mode='nearest',
        #horizontal_flip=True
    )

    # needs to be on a infinite loop for the generator to work
    while 1:
        filesize = len(images_to_read)

        # count how many entries we have read
        n_entries = 0
        # as long as we haven't read all entries from the file: keep reading
        while n_entries < (filesize - batchsize):

            # start the next batch at index 0
            # create numpy arrays of input data (features)
            # - this is already shaped as a tensor (output of the support function paths_to_tensor)
            xs = paths_to_tensor(images_to_read[n_entries : n_entries + batchsize])

            # and label info. Contains 1000 labels in my case for each possible plant species
            ys = labels[n_entries : n_entries + batchsize]

            # we have read one more batch from this file
            n_entries += batchsize

            #perform online augmentation on the xs and ys
            augmented_generator = train_datagen.flow(xs, ys, batch_size = batchsize)

        yield  next(augmented_generator)

这就是我定义模型的方式:
def get_model():

    # define the model
    base_net = ResNet50(input_shape=DIMENSIONS, weights='imagenet', include_top=False)

    # Freeze the layers which you don't want to train. Here I am freezing all of them
    for layer in base_net.layers:
        layer.trainable = False

    x = base_net.output

    #for resnet50
    x = Flatten()(x)
    x = Dense(512, activation="relu")(x)
    x = Dropout(0.5)(x)
    x = Dense(1000, activation='softmax', name='predictions')(x)

    model = Model(inputs=base_net.input, outputs=x)

    # compile the model
    model.compile(
        loss='categorical_crossentropy',
        optimizer=optimizers.Adam(1e-3),
        metrics=['acc'])

    return model

因此,作为结果,我对大约70k图像具有1,562,088个可训练参数

然后,我使用5折交叉验证,但是该模型在任何折痕上均不起作用,因此我将不在此处包含完整的代码,相关的内容是这样的:
trial_fold = temp_model.fit_generator(
                train_generator,
                steps_per_epoch = len(X_train_path) // BATCH_SIZE,
                epochs = 50,
                verbose = 1,
                validation_data = (xs_v,ys_v),#valid_generator,
                #validation_steps= len(X_valid_path) // BATCH_SIZE,
                callbacks = callbacks,
                shuffle=True)

我做了很多事情-确保我的生成器确实在工作,通过减小完全连接的层的大小尝试使用网络的最后几层,尝试增强-没有任何帮助...

我认为网络中的参数数量不会太大-我知道其他人几乎做了同样的事情,并且精度接近0.5,但是我的模型似乎过拟合了。任何有关如何解决此问题的想法将不胜感激!

更新1:

我已决定停止重新发明内容,并按文件排序以使用.flow_from_directory()过程。为了确保导入正确的格式(由下面的Ioannis Nasios注释触发)-我确保从keras的resnet50应用程序中获取了preprocessing_unit()。

我还决定检查模型是否确实在产生有用的东西-我为数据集计算了botleneck特征,然后使用随机森林来预测类。它确实有效,我的准确度约为0.4

因此,我想我的图像输入格式肯定有问题。下一步,我将对模型进行微调(带有新的顶层),以查看问题是否仍然存在...

更新2:

我认为问题在于图像预处理。
最后,我最终没有进行微调,只是提取了botleneck层并训练linear_SVC()-获得了大约60%的训练和大约45%的测试数据集的准确性。

最佳答案

您需要在ImageDataGenerator中使用preprocessing_function参数。

 train_datagen = ImageDataGenerator(preprocessing_function=keras.applications.resnet50.preprocess_input)

这将确保对您正在使用的经过预训练的网络按预期对图像进行预处理。

关于python - resnet50迁移学习期间的大量过拟合,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50364706/

10-11 07:41