我使用Keras应用程序与Resnet 50和Inception V3进行转移学习,但在预测时总是得到[[ 0.]]
下面的代码用于二进制分类问题我也试过vgg19和vgg16,但它们工作得很好,只是重新设置和开始。数据集是50/50分割的我只为每个模型修改了model = applications.resnet50.ResNet50
行代码。
下面是代码:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, 256
train_data_dir = xxx
validation_data_dir = xxx
nb_train_samples = 14000
nb_validation_samples = 6000
batch_size = 16
epochs = 50
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = applications.resnet50.ResNet50(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, 256
train_data_dir = xxx
validation_data_dir = xxx
nb_train_samples = 14000
nb_validation_samples = 6000
batch_size = 16
epochs = 50
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = applications.resnet50.ResNet50(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
#Freeze the layers which you don't want to train. Here I am freezing the first 5 layers.
for layer in model.layers[:5]:
layer.trainable = False
#Adding custom Layers
x = model.output
x = Flatten()(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.5)(x)
#x = Dense(1024, activation="relu")(x)
predictions = Dense(1, activation="sigmoid")(x)
# creating the final model
model_final = Model(input = model.input, output = predictions)
# compile the model
model_final.compile(loss = "binary_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"])
# Initiate the train and test generators with data Augumentation
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# Save the model according to the conditions
#checkpoint = ModelCheckpoint("vgg16_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1)
#early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto')
model_final.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
callbacks=[early_stopping])
from keras.models import load_model
import numpy as np
from keras.preprocessing.image import img_to_array, load_img
#test_model = load_model('vgg16_1.h5')
img = load_img('testn7.jpg',False,target_size=(img_width,img_height))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
#preds = model_final.predict_classes(x)
prob = model_final.predict(x, verbose=0)
#print(preds)
print(prob)
注意,
model_final.evaluate_generator(validation_generator, nb_validation_samples)
提供了一个预期的精度,大约80%,它的预测值总是0。只是觉得奇怪的是vgg19和vgg16工作良好,但不是resnet50和inception。这些模型还需要别的东西来工作吗?
任何洞察都是伟大的。
提前谢谢。
最佳答案
我也遇到了类似的问题在训练期间,您正在将所有RGB值从0-255缩放到0-1。
在预测时也应该这样做。
试用x = img_to_array(img)x = x/255