我想要一些有关如何解决这个有趣问题的想法(至少对我而言)。假设我有一个具有3个不同特征变量的种群,并且该种群具有一些定量等级。一个例子如下:
df
income expense education gender residence
1 153 2989 NoCollege F Own
2 289 872 College F Rent
3 551 98 NoCollege M Rent
4 286 320 College M Rent
5 259 372 NoCollege M Rent
6 631 221 NoCollege M Own
7 729 105 College M Rent
8 582 450 NoCollege M Own
9 570 253 College F Rent
10 1380 635 NoCollege F Rent
11 409 425 NoCollege M Rent
12 569 232 NoCollege F Own
13 317 856 College M Rent
14 199 283 College F Own
15 624 564 NoCollege M Own
16 1064 504 NoCollege M Own
17 821 169 NoCollege F Rent
18 402 175 College M Own
19 602 285 College M Rent
20 433 264 College M Rent
21 670 985 NoCollege F Own
我可以对三个特征变量(教育,性别和居住地)定义的细分受众群进行支出与收入之比(SIR)的计算。因此,在第一级,没有进行分段,并且SIR为:
df %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>> count spending_ratio
1 21 95.8
然后,我将人口分为男性和女性,得到:
df %>% group_by(gender) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>> gender count spending_ratio
1 F 8 138.0
2 M 13 67.3
我们通过引入教育来继续这一过程:
df %>% group_by(gender, education) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>> gender education count spending_ratio
1 F College 3 133.1
2 F NoCollege 5 139.4
3 M College 6 72.4
4 M NoCollege 7 63.9
最后添加
residence
:df %>% group_by(gender, education, residence) %>% summarise(count=n(), spending_ratio=sum(expense)/sum(income)*100)
>> gender education residence count spending_ratio
1 F College Own 1 142.2
2 F College Rent 2 131.0
3 F NoCollege Own 3 302.2
4 F NoCollege Rent 2 36.5
5 M College Own 1 43.5
6 M College Rent 5 77.3
7 M NoCollege Own 4 59.9
8 M NoCollege Rent 3 73.4
我想实现的是生成一个包含以上所有信息的treemap-like plot。但是正如您所看到的,树状图与我想要的距离很远。我想要得到的是一张类似于顶部图像的地图,其中每个矩形的大小代表计数,颜色代表SIR,并且包括树的所有层。
任何帮助深表感谢。
最佳答案
您可以使用treemap
包在不同级别进行聚合,但是随后需要对输出进行相当多的格式化。当treemap
进行连续聚合时,它将所有其他变量删除到data.table中。因此,由于您的聚合函数需要其他变量,因此我创建了一些虚拟变量。变量“索引”用于索引每个子集的“费用”和“收入”。这是你可以做到的
library(treemap)
library(data.table)
## Some dummy variables to aggregate by: ALL, i, and index
dat <- as.data.table(df)[, `:=`(total = factor("ALL"), i = 1, index = 1:.N)][]
indexList <- c('total', 'gender', 'education', 'residence') # order or aggregation
## Function to aggregate at each grouping level (SIR)
agg <- function(index, ...) {
dots <- list(...)
expense <- dots[["expense"]][index]
income <- dots[["income"]][index]
sum(expense) / sum(income) * 100
}
## Get treemap data
res <- treemap(dat, index=indexList, vSize='i', vColor='index',
type="value", fun.aggregate = "agg",
palette = 'RdYlBu',
income=dat[["income"]],
expense=dat[["expense"]]) # ... args get passed to fun.aggregate
## The useful variables: level (corresponds to indexList), vSize (bar size), vColor(SIR)
## Create a label variable that is the value of the variable in indexList at each level
out <- res$tm
out$label <- out[cbind(1:nrow(out), out$level)]
out$label <- with(out, ifelse(level==4, substring(label, 1, 1), label)) # shorten labels
out$level <- factor(out$level, levels=sort(unique(out$level), TRUE)) # factor levels
## Time to find label positions, scale to [0, 1] first
## x-value is cumsum by group, y will just be the level
out$xlab <- out$vSize / max(aggregate(vSize ~ level, data=out, sum)$vSize)
split(out$xlab, out$level) <- lapply(split(out$xlab, out$level), function(x) cumsum(x) - x/2)
## Make plot
library(ggplot2)
ggplot(out, aes(x=level, y=vSize, fill=color, group=interaction(level, label))) +
geom_bar(stat='identity', position='fill') + # add another for black rectangles but not legend
geom_bar(stat='identity', position='fill', color="black", show_guide=FALSE) +
geom_text(data=out, aes(x=level, y=xlab, label=label, ymin=0, ymax=1), size=6, font=2,
inherit.aes=FALSE) +
coord_flip() +
scale_fill_discrete('SIR', breaks=out$color, labels = round(out$vColor)) +
theme_minimal() + # Then just some formatting
xlab("") + ylab("") +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())
编辑
我认为使用SIR的渐变颜色实际上效果更好。为此,您只需将
fill=color
替换为fill=vColor
并按一定的渐变比例填充即可。## Make plot with gradient color for SIR
library(ggplot2)
ggplot(out, aes(x=level, y=vSize, fill=vColor, group=interaction(level, label))) +
geom_bar(stat='identity', position='fill') + # add another for black rectangles but not legend
geom_bar(stat='identity', position='fill', color="black", show_guide=FALSE) +
geom_text(data=out, aes(x=level, y=xlab, label=label, ymin=0, ymax=1), size=6, font=2,
inherit.aes=FALSE) +
coord_flip() +
scale_fill_gradientn(colours = c("white", "red")) +
theme_minimal() + # Then just some formatting
xlab("") + ylab("") +
theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank())