目前,我使用的是titathink(TT522PW)的IP摄像机,该摄像机可提供1280 * 720的视频流和30 FPS的,并带有普通传感器(不是具有高灵敏度低照度的型号)
捕获视频流时,我们在帧上看到鱼眼型失真。
未校正的图像
校准后的图像
水平线校正图像
计算和过滤视差图的代码
bool Disparity_filter::initDispParam(){
#ifdef USE_CUDA
block_matcher_ = cv::cuda::createStereoBM(num_disp_, block_size_);
#else
block_matcher_ = cv::StereoBM::create(num_disp_, block_size_);
#endif
#ifdef USE_OPEN_CV_CONTRIB
wls_filter_ = cv::ximgproc::createDisparityWLSFilter(block_matcher_); // left_matcher
wls_filter_->setLambda(8000.0);
wls_filter_->setSigmaColor(1.5);
right_matcher_ = cv::ximgproc::createRightMatcher(block_matcher_);
#endif
return true;
}
void Disparity_filter::computeDisparityMap(std::shared_ptr<Frame> framel, std::shared_ptr<Frame> framer){
framel->raw_disparity_map_=cv::Mat(HEIGHT, WIDTH, CV_16SC1);
#ifdef USE_CUDA
cv::cuda::GpuMat cuda_disp_left;
framel->cuda_crop_left.upload(framel->cpu_crop_left);
framer->cuda_crop_right.upload(framer->cpu_crop_right);
// GPU implementation of stereoBM outputs uint8_t, i.e. CV_8U
block_matcher_->compute(framel->cuda_crop_left.clone(),
framer->cuda_crop_right.clone(),
cuda_disp_left);
cuda_disp_left.download(framel->raw_disparity_map_);
framel->raw_disparity_map_.convertTo(framel->disparity_map_8u_, CV_8UC1, 1);
// convert it from CV_8U to CV_16U for unified
// calculation in filterDisparityMap() & unprojectPtCloud()
framel->raw_disparity_map_.convertTo(framel->raw_disparity_map_, CV_16S, 16);
#else
// CPU implementation of stereoBM outputs short int, i.e. CV_16S
cv::Mat left_for_matcher ,right_for_matcher;
left_for_matcher = framel->cpu_crop_left.clone();
right_for_matcher = framer->cpu_crop_right.clone();
cv::cvtColor(left_for_matcher, left_for_matcher, cv::COLOR_BGR2GRAY);
cv::cvtColor(right_for_matcher, right_for_matcher, cv::COLOR_BGR2GRAY);
block_matcher_->compute(left_for_matcher, right_for_matcher, framel->raw_disparity_map_);
framel->raw_disparity_map_.convertTo(framel->disparity_map_8u_, CV_8UC1, 0.0625);
#endif
}
void Disparity_filter::filterDisparityMap(std::shared_ptr<Frame> framel, std::shared_ptr<Frame> framer){
right_matcher_->compute(framer->cpu_crop_right.clone(),
framel->cpu_crop_left.clone(),
raw_right_disparity_map_);
// Only takes CV_16S type cv::Mat
wls_filter_->filter(framel->raw_disparity_map_,
framel->cpu_crop_left,
filtered_disparity_map_,
raw_right_disparity_map_);
filtered_disparity_map_.convertTo(framel->filtered_disparity_map_8u_, CV_8UC1, 0.0625);
}
计算点云的代码
bool PointCloud::initPointCloud(){
std::string stereo_c2="../calibration/sterolast.xml"; //calib_stereo.xml"; //
cv::FileStorage ts(stereo_c2,cv::FileStorage::READ);
if (!ts.isOpened()) {
std::cerr << "Failed to open calibration parameter file." << std::endl;
return false;
}
cv::Mat P1,P2;
ts["P1"] >> param_proj_left_;
ts["P2"] >> param_proj_right_;
principal_x_ = param_proj_left_.at<double>(0, 2);
principal_y_ = param_proj_left_.at<double>(1, 2);
fx_ = param_proj_left_.at<double>(0, 0);
fy_ = param_proj_left_.at<double>(1, 1);
baseline_x_fx_ = -param_proj_right_.at<double>(0, 3);
std::cout<<"** principal_x= " << principal_x_ <<" ** principal_y= " << principal_y_ <<" ** fx= " << fx_ <<" ** fy= " << fy_<<" ** baseline_x_fx= " << baseline_x_fx_<<std::endl<< std::flush;
return true;
}
void PointCloud::unprojectPtCloud(std::shared_ptr<Frame> framel)
{
// due to rectification, the image boarder are blank
// we cut them out
int border_size = num_disp_;
const int trunc_img_width_end = HEIGHT - border_size;
const int trunc_img_height_end = WIDTH - border_size;
mat_vec3_pt_ = cv::Mat_<cv::Vec3f>(HEIGHT, WIDTH, cv::Vec3f(0, 0, 0));
cv::Mat color_mat_(HEIGHT, WIDTH, CV_8UC1, &color_buffer_[0]) ;
for(int v = border_size; v < trunc_img_height_end; ++v)
{
for(int u = border_size; u < trunc_img_width_end; ++u)
{
cv::Vec3f &point = mat_vec3_pt_.at<cv::Vec3f>(v, u);
#ifdef USE_OPEN_CV_CONTRIB
float disparity = (float)(framel->raw_disparity_map_.at<short int>(v, u)*0.0625);
#else
float disparity = (float)(framel->raw_disparity_map_.at<short int>(v, u)*0.0625);
#endif
//std::cout<<"** disparity " << disparity << std::endl<< std::flush;
// do not consider pts that are farther than 8.6m, i.e. disparity < 6
if(disparity >= 60)
{
point[2] = baseline_x_fx_/disparity;
point[0] = (u-principal_x_)*point[2]/fx_;
point[1] = (v-principal_y_)*point[2]/fy_;
}
color_buffer_[v*WIDTH+u] = framel->cpu_crop_left.at<uint8_t>(v, u);
}
}
color_mat_ = cv::Mat(HEIGHT, WIDTH, CV_8UC1, &color_buffer_[0]).clone();
framel->mat_vec3=mat_vec3_pt_;
framel->color_m=color_mat_;
pt_cloud_ = cv::viz::WCloud(mat_vec3_pt_, color_mat_);
}
当我计算视差图并对其进行过滤时,我得到的图不是100%清晰的(尽管摄像机中的位置和障碍物固定在流中,但仍会改变光强度的区域,不是很清晰,但是可以接受),您可以看到一个小视频,其中我使用RMS = 0.2的校准文件对其进行了测试。
立体视差图测试
test of stereo vision- disparity map
点云
问题
谢谢你的帮助 :)
最佳答案
为了回答这个问题,我看了您分享的视频。过滤后的视差图看起来不错。您使用的WLS过滤器会给出这样的视差图。没有什么问题。但是通常,对于点云,不建议将过滤后的视差图作为输入。这是因为过滤器倾向于填充算法未发现的漏洞。换句话说,它们是不可靠的数据。因此,尝试将未经过滤的视差图作为输入点云。
另外,您用来查看点云的查看器,即网格实验室经常会吞噬一些点。因此,您可以使用其他查看器,例如CloudCompare。
是的,在大多数情况下,0.20 RMS误差就足够了。但同样,越小越好。
关于opencv - 如何获得干净的视差图和干净的深度图,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/56063166/