我已经用python编写了逻辑回归的代码,并将其结果与Scikit-learn的逻辑回归进行了比较。稍后在一个简单的一维样本数据上的表现较差,如下所示:
我的物流
import pandas as pd
import numpy as np
def findProb(xBias, beta):
z = []
for i in range(len(xBias)):
z.append(xBias.iloc[i,0]*beta[0] + xBias.iloc[i,1]*beta[1])
prob = [(1/(1+np.exp(-i))) for i in z]
return prob
def calDerv(xBias, y, beta, prob):
derv = []
for i in range(len(beta)):
helpVar1 = 0
for j in range(len(xBias)):
helpVar2 = prob[j]*xBias.iloc[j,i] - y[j]*xBias.iloc[j,i]
helpVar1 = helpVar1 + helpVar2
derv.append(helpVar1/len(xBias))
return derv
def updateBeta(beta, alpha, derv):
for i in range(len(beta)):
beta[i] = beta[i] - derv[i]*alpha
return beta
def calCost(y, prob):
cost = 0
for i in range(len(y)):
if y[i] == 1: eachCost = -y[i]*np.log(prob[i])
else: eachCost = -(1-y[i])*np.log(1-prob[i])
cost = cost + eachCost
return cost
def myLogistic(x, y, alpha, iters):
beta = [0 for i in range(2)]
bias = [1 for i in range(len(x))]
xBias = pd.DataFrame({'bias': bias, 'x': x})
for i in range(iters):
prob = findProb(xBias, beta)
derv = calDerv(xBias, y, beta, prob)
beta = updateBeta(beta, alpha, derv)
return beta
比较少量样本数据的结果
input = list(range(1, 11))
labels = [0,0,0,0,0,1,1,1,1,1]
print("\nmy logistic")
learningRate = 0.01
iterations = 10000
beta = myLogistic(input, labels, learningRate, iterations)
print("coefficients: ", beta)
print("decision boundary is at x = ", -beta[0]/beta[1])
decision = -beta[0]/beta[1]
predicted = [0 if i < decision else 1 for i in input]
print("predicted values: ", predicted)
输出:0,0,0,0,0,1,1,1,1,1
print("\npython logistic")
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
input = np.reshape(input, (-1,1))
lr.fit(input, labels)
print("coefficient = ", lr.coef_)
print("intercept = ", lr.intercept_)
print("decision = ", -lr.intercept_/lr.coef_)
predicted = lr.predict(input)
print(predicted)
输出:0,0,0,1,1,1,1,1,1,1
最佳答案
您的实现没有正则化术语。 LinearRegression
估计器默认包括强度反比为C = 1.0
的正则化。当您将C
设置为较高的值时,即削弱正则化,决策边界将更靠近5.5
:
for C in [1.0, 1000.0, 1e+8]:
lr = LogisticRegression(C=C)
lr.fit(inp, labels)
print(f'C = {C}, decision boundary @ {(-lr.intercept_/lr.coef_[0])[0]}')
输出:
C = 1.0, decision boundary @ 3.6888430562595116
C = 1000.0, decision boundary @ 5.474229032805065
C = 100000000.0, decision boundary @ 5.499634348989383
关于python - 在Python中,Scikit学习逻辑回归的性能比自写逻辑回归差,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/50753400/