我有几个数据点似乎适合于通过它们拟合样条曲线。当我这样做时,我得到了一个非常坎bump的拟合,例如过度拟合,这不是我所理解的平滑。
是否有特殊的选项/参数来恢复像here这样的非常平滑的样条曲线的功能。penalty
的smooth.spline
参数的使用没有任何可见的效果。也许我做错了吗?
以下是数据和代码:
results <- structure(
list(
beta = c(
0.983790622281964, 0.645152464354322,
0.924104713597375, 0.657703886566088, 0.788138034115623, 0.801080207252363,
1, 0.858337365965949, 0.999687052533693, 0.666552625121279, 0.717453633245958,
0.621570152961453, 0.964658181346544, 0.65071758770312, 0.788971505000918,
0.980476054183113, 0.670263506919246, 0.600387040967624, 0.759173403408052,
1, 0.986409675965, 0.982996471134736, 1, 0.995340781899163, 0.999855895958986,
1, 0.846179233381267, 0.879226324448832, 0.795820998892035, 0.997586607285667,
0.848036806290156, 0.905320944437968, 0.947709125535428, 0.592172373022407,
0.826847031044922, 0.996916006944244, 0.785967729206612, 0.650346929853076,
0.84206351833549, 0.999043126652724, 0.936879214753098, 0.76674066557003,
0.591431233516217, 1, 0.999833445117791, 0.999606223666537, 0.6224971799303,
1, 0.974537160571494, 0.966717133936379
), inventoryCost = c(
1750702.95138889,
442784.114583333, 1114717.44791667, 472669.357638889, 716895.920138889,
735396.180555556, 3837320.74652778, 872873.4375, 2872414.93055556,
481095.138888889, 538125.520833333, 392199.045138889, 1469500.95486111,
459873.784722222, 656220.486111111, 1654143.83680556, 437511.458333333,
393295.659722222, 630952.170138889, 4920958.85416667, 1723517.10069444,
1633579.86111111, 4639909.89583333, 2167748.35069444, 3062420.65972222,
5132702.34375, 838441.145833333, 937659.288194444, 697767.1875,
2523016.31944444, 800903.819444444, 1054991.49305556, 1266970.92013889,
369537.673611111, 764995.399305556, 2322879.6875, 656021.701388889,
458403.038194444, 844133.420138889, 2430700, 1232256.68402778,
695574.479166667, 351348.524305556, 3827440.71180556, 3687610.41666667,
2950652.51736111, 404550.78125, 4749901.64930556, 1510481.59722222,
1422708.07291667
)
), .Names = c("beta", "inventoryCost"), class = c("data.frame")
)
plot(results$beta,results$inventoryCost)
mySpline <- smooth.spline(results$beta,results$inventoryCost, penalty=999999)
lines(mySpline$x, mySpline$y, col="red", lwd = 2)
最佳答案
在建模之前,合理地转换数据
根据results$inventoryCost
的规模,对数转换是合适的。为了简单起见,下面我使用x
,y
。我也正在重新排序您的数据,以便x
升序:
x <- results$beta; y <- log(results$inventoryCost)
reorder <- order(x); x <- x[reorder]; y <- y[reorder]
par(mfrow = c(1,2))
plot(x, y, main = "take log transform")
hist(x, main = "x is skewed")
左图看起来更好?另外,强烈建议对
x
进行进一步转换,因为它偏斜了! (请参见右图)。以下转换是适当的:
x1 <- -(1-x)^(1/3)
(1-x)
的立方根将使数据在x = 1
周围更加分散。我添加了一个附加的-1
,以便x
和x1
之间存在正的单调关系,而不是负的关系。现在让我们检查一下关系:par(mfrow = c(1,2))
plot(x1, y, main = expression(y %~% ~ x1))
hist(x1, main = "x1 is well spread out")
拟合样条曲线
现在,我们可以进行统计建模了。尝试以下调用:
fit <- smooth.spline(x1, y, nknots = 10)
pred <- stats:::predict.smooth.spline(fit, x1)$y ## predict at all x1
## or you can simply call: pred <- predict(fit, x1)$y
plot(x1, y) ## scatter plot
lines(x1, pred, lwd = 2, col = 2) ## fitted spline
看起来不错吗?注意,我已经使用
nknots = 10
告诉smooth.spline
放置了10个内部结(按分位数);因此,我们要拟合罚分回归样条而不是平滑样条。实际上,除非您放置smooth.spline()
,否则all.knots = TRUE
函数几乎永远不会适合平滑样条线(请参阅后面的示例)。我还删除了
penalty = 999999
,因为这与平滑度控制无关。如果您真的想控制平滑度,而不是让smooth.spline
通过GCV找出最佳的平滑度,则应使用df
或spar
参数。我将在后面给出示例。要将拟合转换回原始比例,请执行以下操作:
plot(x, exp(y), main = expression(Inventory %~%~ beta))
lines(x, exp(pred), lwd = 2, col = 2)
如您所见,拟合的样条曲线与您期望的一样平滑。
拟合样条曲线的说明
让我们看一下拟合样条线的摘要:
> fit
Smoothing Parameter spar= 0.4549062 lambda= 0.0008657722 (11 iterations)
Equivalent Degrees of Freedom (Df): 6.022959
Penalized Criterion: 0.08517417
GCV: 0.004288539
我们使用了10节,以6个自由度结束,因此惩罚可以抑制大约4个参数。经过11次迭代后,选择的平滑参数GCV为
lambda= 0.0008657722
。为什么我们必须将
x
转换为x1
样条曲线受到二阶导数的惩罚,但是这种惩罚是在所有数据点对平均/综合二阶导数进行的。现在,查看您的数据
(x, y)
。对于0.98之前的x
,该关系相对稳定。随着x
接近1,这种关系会迅速变得更加陡峭。 “变化点” 0.98具有很高的二阶导数,远高于其他位置的二阶导数。y0 <- as.numeric(tapply(y, x, mean)) ## remove tied values
x0 <- unique(x) ## remove tied values
dy0 <- diff(y0)/diff(x0) ## 1st order difference
ddy0 <- diff(dy0)/diff(x0[-1]) ## 2nd order difference
plot(x0[1:43], abs(ddy0), pch = 19)
看看二阶差分/导数的巨大峰值!现在,如果我们直接拟合样条曲线,则围绕此更改点的样条曲线将受到严重惩罚。
bad <- smooth.spline(x, y, all.knots = TRUE)
bad.pred <- predict(bad, x)$y
plot(x, exp(y), main = expression(Inventory %~% ~ beta))
lines(x, exp(bad.pred), col = 2, lwd = 3)
abline(v = 0.98, lwd = 2, lty = 2)
您可以清楚地看到,在
x = 0.98
之后,样条在逼近数据方面有些困难。当然,有一些方法可以在此更改点之后获得更好的逼近度,例如,通过手动设置较小的平滑参数或较高的自由度。但是,我们将走向另一个极端。请记住,惩罚和自由度都是全局度量。在
x = 0.98
之后,增加模型复杂度将获得更好的近似值,但同时也会使其他部分变得更加坎bump。现在,让我们尝试一个具有45个自由度的模型:worse <- smooth.spline(x, y, all.knots = TRUE, df = 45)
worse.pred <- predict(worse, x)$y
plot(x, exp(y), main = expression(Inventory %~% ~ beta))
lines(x, exp(worse.pred), col = 2, lwd = 2)
如您所见,曲线是颠簸的。当然,我们已经过度拟合了50个数据集和45个自由度的数据集。
实际上,您最初对
smooth.spline()
的滥用是在做同样的事情:> mySpline
Call:
smooth.spline(x = results$beta, y = results$inventoryCost, penalty = 999999)
Smoothing Parameter spar= -0.8074624 lambda= 3.266077e-19 (17 iterations)
Equivalent Degrees of Freedom (Df): 45
Penalized Criterion: 5.598386
GCV: 0.03824885
糟糕,自由度45,过拟合!