早上好,我是机器学习和神经网络领域的新手。我正在尝试建立一个完全连接的神经网络来解决回归问题。数据集由18个要素和1个标签组成,所有这些都是物理量。

您可以在下面找到代码。我沿着历时上传损失函数演化图(您可以在下面找到它)。我不确定是否过度拟合。有人可以向我解释为什么存在过度拟合吗?

import pandas as pd
import numpy as np

from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
from sklearn import preprocessing

from sklearn.model_selection import train_test_split

from matplotlib import pyplot as plt

import keras
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping
from keras import optimizers
from sklearn.metrics import r2_score
from keras import regularizers
from keras import backend
from tensorflow.keras import regularizers
from keras.regularizers import l2

# =============================================================================
# Scelgo il test size
# =============================================================================
test_size = 0.2

dataset = pd.read_csv('DataSet.csv', decimal=',', delimiter = ";")

label = dataset.iloc[:,-1]
features = dataset.drop(columns = ['Label'])

y_max_pre_normalize = max(label)
y_min_pre_normalize = min(label)

def denormalize(y):
    final_value = y*(y_max_pre_normalize-y_min_pre_normalize)+y_min_pre_normalize
    return final_value

# =============================================================================
# Split
# =============================================================================

X_train1, X_test1, y_train1, y_test1 = train_test_split(features, label, test_size = test_size, shuffle = True)

y_test2 = y_test1.to_frame()
y_train2 = y_train1.to_frame()

# =============================================================================
# Normalizzo
# =============================================================================
scaler1 = preprocessing.MinMaxScaler()
scaler2 = preprocessing.MinMaxScaler()
X_train = scaler1.fit_transform(X_train1)
X_test = scaler2.fit_transform(X_test1)


scaler3 = preprocessing.MinMaxScaler()
scaler4 = preprocessing.MinMaxScaler()
y_train = scaler3.fit_transform(y_train2)
y_test = scaler4.fit_transform(y_test2)



# =============================================================================
# Creo la rete
# =============================================================================
optimizer = tf.keras.optimizers.Adam(lr=0.001)
model = Sequential()

model.add(Dense(60, input_shape = (X_train.shape[1],), activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dropout(0.2))
model.add(Dense(60, activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dropout(0.2))
model.add(Dense(60, activation = 'relu',kernel_initializer='glorot_uniform'))

model.add(Dense(1,activation = 'linear',kernel_initializer='glorot_uniform'))

model.compile(loss = 'mse', optimizer = optimizer, metrics = ['mse'])

history = model.fit(X_train, y_train, epochs = 100,
                    validation_split = 0.1, shuffle=True, batch_size=250
                    )

history_dict = history.history

loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']

y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

y_train_pred = denormalize(y_train_pred)
y_test_pred = denormalize(y_test_pred)


plt.figure()
plt.plot((y_test1),(y_test_pred),'.', color='darkviolet', alpha=1, marker='o', markersize = 2, markeredgecolor = 'black', markeredgewidth = 0.1)
plt.plot((np.array((-0.1,7))),(np.array((-0.1,7))),'-', color='magenta')
plt.xlabel('True')
plt.ylabel('Predicted')
plt.title('Test')

plt.figure()
plt.plot((y_train1),(y_train_pred),'.', color='darkviolet', alpha=1, marker='o', markersize = 2, markeredgecolor = 'black', markeredgewidth = 0.1)
plt.plot((np.array((-0.1,7))),(np.array((-0.1,7))),'-', color='magenta')
plt.xlabel('True')
plt.ylabel('Predicted')
plt.title('Train')

plt.figure()
plt.plot(loss_values,'b',label = 'training loss')
plt.plot(val_loss_values,'r',label = 'val training loss')
plt.xlabel('Epochs')
plt.ylabel('Loss Function')
plt.legend()

print("\n\nThe R2 score on the test set is:\t{:0.3f}".format(r2_score(y_test_pred, y_test1)))

print("The R2 score on the train set is:\t{:0.3f}".format(r2_score(y_train_pred, y_train1)))
from sklearn import metrics

# Measure MSE error.
score = metrics.mean_squared_error(y_test_pred,y_test1)
print("\n\nFinal score test (MSE): %0.4f" %(score))
score1 = metrics.mean_squared_error(y_train_pred,y_train1)
print("Final score train (MSE): %0.4f" %(score1))
score2 = np.sqrt(metrics.mean_squared_error(y_test_pred,y_test1))
print(f"Final score test (RMSE): %0.4f" %(score2))
score3 = np.sqrt(metrics.mean_squared_error(y_train_pred,y_train1))
print(f"Final score train (RMSE): %0.4f" %(score3))

python -  tensorflow /keras神经网络中的过度拟合和数据泄漏-LMLPHP

编辑:

我还尝试了其他功能,以提高功能重要性并提高n_epochs,这些是结果:

功能重要性:

python -  tensorflow /keras神经网络中的过度拟合和数据泄漏-LMLPHP

无功能重要性:

python -  tensorflow /keras神经网络中的过度拟合和数据泄漏-LMLPHP

最佳答案

看起来您没有过度拟合!您的训练和验证曲线一起下降并收敛。过度拟合最明显的迹象就是这两条曲线之间的偏差,如下所示:python -  tensorflow /keras神经网络中的过度拟合和数据泄漏-LMLPHP

由于您的两条曲线正在下降并且没有发散,因此表明您的NN训练是健康的。

但是!您的验证曲线可疑地低于训练曲线。这暗示了可能的数据泄漏(火车和测试数据以某种方式混合了)。简短的blog post的更多信息。通常,您应该在其他任何预处理(规范化,扩充,重排等)之前拆分数据

造成这种情况的其他原因可能是某种类型的正则化(辍学,BN等),该正则化在计算训练准确度时处于事件状态,而在计算验证/测试准确度时处于禁用状态。

关于python - tensorflow /keras神经网络中的过度拟合和数据泄漏,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/59856614/

10-13 02:28