我目前正在使用免费的UCI乳腺癌.arff
文件练习WEKA建模的绳索,并且在这里的各种文章中,我都可以调整它的准确性,范围从63%到73%。我在Windows 7 Starter计算机中使用WEKA 3.7.10
。
我使用属性选择来减少将InfoGainAttributeEval
与Ranker
一起使用的变量数量。我选择了前五名,结果如下:
Evaluator: weka.attributeSelection.InfoGainAttributeEval
Search: weka.attributeSelection.Ranker -T -1.7976931348623157E308 -N -1
Relation: breast-cancer
Instances: 286
Attributes: 10
age
menopause
tumor-size
inv-nodes
node-caps
deg-malig
breast
breast-quad
irradiat
Class
Evaluation mode: 10-fold cross-validation
=== Attribute selection 10 fold cross-validation (stratified), seed: 1 ===
average merit average rank attribute
0.078 +- 0.011 1.3 +- 0.64 6 deg-malig
0.071 +- 0.01 1.9 +- 0.3 4 inv-nodes
0.061 +- 0.008 3 +- 0.77 3 tumor-size
0.051 +- 0.007 3.8 +- 0.4 5 node-caps
0.026 +- 0.006 5 +- 0 9 irradiat
0.012 +- 0.003 6.4 +- 0.49 1 age
0.01 +- 0.003 6.6 +- 0.49 8 breast-quad
0.003 +- 0.001 8.5 +- 0.5 7 breast
0.003 +- 0.002 8.5 +- 0.5 2 menopause
删除排名较低的变量后,我继续创建模型。我之所以选择“多层感知器”,是因为它是我研究所依据的期刊中必需的算法。
将
0.1
用于learning rate
和momentum
的suggestion of Bernhard Pfahringe以及用于hidden nodes
和epoch
的指数因子1、2、4、8的因数,依此类推。在对该方法进行了几次尝试之后,我注意到了一种使用2作为隐藏层的模式,以及一个等效于二进制数的小数形式,即。 512、1024、2048,...,从而提高了准确性。例如,
hidden node
为2,而epoch
为1024,依此类推。我得到了一系列不同的结果,但是到目前为止,我得到的最高结果是以下结果(使用
hidden node
2和epoch
16384: Scheme: weka.classifiers.functions.MultilayerPerceptron -L 0.1 -M 0.1 -N 16384 -V 0 -S 0 -E 20 -H 2
Relation: breast-cancer-weka.filters.unsupervised.attribute.Remove-R1-2,7-8
Instances: 286
Attributes: 6
tumor-size
inv-nodes
node-caps
deg-malig
irradiat
Class
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
Sigmoid Node 0
Inputs Weights
Threshold -2.4467109489840375
Node 2 2.960926490700117
Node 3 1.5276384018358489
Sigmoid Node 1
Inputs Weights
Threshold 2.446710948984037
Node 2 -2.9609264907001167
Node 3 -1.5276384018358493
Sigmoid Node 2
Inputs Weights
Threshold 0.8594931368555995
Attrib tumor-size=0-4 -0.6809394102558067
Attrib tumor-size=5-9 -0.7999278705976403
Attrib tumor-size=10-14 -0.5139914771540879
Attrib tumor-size=15-19 2.3071396030112834
Attrib tumor-size=20-24 -6.316868254289899
Attrib tumor-size=25-29 5.535754474315768
Attrib tumor-size=30-34 -12.31495416708197
Attrib tumor-size=35-39 2.165860489861981
Attrib tumor-size=40-44 10.740913335424047
Attrib tumor-size=45-49 9.102261927484186
Attrib tumor-size=50-54 -17.072392893550735
Attrib tumor-size=55-59 0.043056333044031
Attrib inv-nodes=0-2 9.578867366884618
Attrib inv-nodes=3-5 1.3248317047328586
Attrib inv-nodes=6-8 -5.081199984305494
Attrib inv-nodes=9-11 -8.604844224457239
Attrib inv-nodes=12-14 2.2330604430275907
Attrib inv-nodes=15-17 -2.8692154868988355
Attrib inv-nodes=18-20 0.04225234708199947
Attrib inv-nodes=21-23 0.017664071511846485
Attrib inv-nodes=24-26 -0.9992481277256989
Attrib inv-nodes=27-29 -0.02737484354173595
Attrib inv-nodes=30-32 -0.04607516719307534
Attrib inv-nodes=33-35 -0.038969156415242706
Attrib inv-nodes=36-39 0.03338452826774849
Attrib node-caps 6.764954936579671
Attrib deg-malig=1 -5.037151186065571
Attrib deg-malig=2 12.469858109768378
Attrib deg-malig=3 -8.382625277311769
Attrib irradiat 8.302010702287868
Sigmoid Node 3
Inputs Weights
Threshold -0.7428771456532647
Attrib tumor-size=0-4 3.5709673152321555
Attrib tumor-size=5-9 3.563713261511895
Attrib tumor-size=10-14 7.86118954430952
Attrib tumor-size=15-19 2.8762105204084167
Attrib tumor-size=20-24 4.60168522637948
Attrib tumor-size=25-29 -5.849391383398816
Attrib tumor-size=30-34 -1.6805815971562046
Attrib tumor-size=35-39 -12.022394228003419
Attrib tumor-size=40-44 11.922229608392747
Attrib tumor-size=45-49 -1.9939414047194557
Attrib tumor-size=50-54 -5.9801974214306215
Attrib tumor-size=55-59 -0.04909236196295539
Attrib inv-nodes=0-2 5.569516359775502
Attrib inv-nodes=3-5 -7.871275549119543
Attrib inv-nodes=6-8 3.405277467966008
Attrib inv-nodes=9-11 -0.3253699778307026
Attrib inv-nodes=12-14 1.244234346055825
Attrib inv-nodes=15-17 1.179311225120216
Attrib inv-nodes=18-20 0.03495291263409073
Attrib inv-nodes=21-23 0.0043299366591334695
Attrib inv-nodes=24-26 0.6595250300030937
Attrib inv-nodes=27-29 -0.02503529326219822
Attrib inv-nodes=30-32 0.041787638417097844
Attrib inv-nodes=33-35 0.008416652090130837
Attrib inv-nodes=36-39 -0.014551878794926747
Attrib node-caps 4.7997880904143955
Attrib deg-malig=1 1.6752746955482163
Attrib deg-malig=2 6.130488722916935
Attrib deg-malig=3 -6.989852429736567
Attrib irradiat 8.716254786514295
Class no-recurrence-events
Input
Node 0
Class recurrence-events
Input
Node 1
Time taken to build model: 27.05 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 210 73.4266 %
Incorrectly Classified Instances 76 26.5734 %
Kappa statistic 0.2864
Mean absolute error 0.3312
Root mean squared error 0.4494
Relative absolute error 79.1456 %
Root relative squared error 98.3197 %
Coverage of cases (0.95 level) 98.951 %
Mean rel. region size (0.95 level) 97.7273 %
Total Number of Instances 286
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.891 0.635 0.768 0.891 0.825 0.300 0.633 0.748 no-recurrence-events
0.365 0.109 0.585 0.365 0.449 0.300 0.633 0.510 recurrence-events
Weighted Avg. 0.734 0.479 0.714 0.734 0.713 0.300 0.633 0.677
=== Confusion Matrix ===
a b <-- classified as
179 22 | a = no-recurrence-events
54 31 | b = recurrence-events
我的问题是,如何才能将数据的准确性至少提高到90%?
我是否必须进行过滤,使用另一种MLP输入参数模式?
我计划在学习如何使用之后再使用另一组数据(它包含约50个变量和100,000个实例)。
最佳答案
对于这样的问题,显然没有好的答案,但是我将为您提供使用MLP的一些或多或少的一般提示:
首先,为什么要在处理如此小的数据集时删除要素?特征选择在高维问题和/或计算昂贵的模型中很重要。对于乳腺癌和MLP来说都不是正确的。
迭代计数是MLP的最糟糕的停止标准,您应该在验证错误增加时停止训练,而不是经过一定数量的迭代后停止训练
我不知道您使用什么成本函数,但是最重要的部分是正则化,因为MLP容易过度拟合。某些Tikhonov正则化是最低要求。
为这个问题使用多个隐藏层是完全多余的。特别是,由于梯度现象的消失,在MLP中训练多个隐藏层通常是不可能的。
为了摆脱学习算法的参数化,我还建议您放弃朴素的算法,并至少使用残余传播,这被证明在许多应用中效果很好。