我试图将How to use a MultiVariateNormal distribution in the latest version of Tensorflow中给出的示例推广到二维正态分布中,但是要处理多个批次。当我运行以下命令时:
from tensorflow_probability import distributions as tfd
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
mu = [[1, 2],
[-1,-2]]
cov = [[1, 3./5],
[3./5, 2]]
cov = [cov, cov] # for demonstration purpose, use same cov for both batches
mvn = tfd.MultivariateNormalFullCovariance(
loc=mu,
covariance_matrix=cov)
# generate the pdf
X, Y = tf.meshgrid(tf.range(-3, 3, 0.1), tf.range(-3, 3, 0.1))
idx = tf.concat([tf.reshape(X, [-1, 1]), tf.reshape(Y,[-1,1])], axis =1)
prob = tf.reshape(mvn.prob(idx), tf.shape(X))
我收到不兼容的形状错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [3600,2] vs. [2,2] [Op:Sub] name: MultivariateNormalFullCovariance/log_prob/affine_linear_operator/inverse/sub/
我对文档(https://www.tensorflow.org/api_docs/python/tf/contrib/distributions/MultivariateNormalFullCovariance)的理解是,要计算pdf,需要一个[n_observation,n_dimensions]张量(在本示例中就是这种情况:
idx.shape
= TensorShape([Dimension(3600), Dimension(2)])
)。我算错了吗? 最佳答案
您需要在倒数第二个位置的idx
张量中添加批处理轴,因为60x60无法针对mvn.batch_shape
的(2,)
进行广播。
# TF/TFP Imports
!pip install --quiet tfp-nightly tf-nightly
import tensorflow.compat.v2 as tf
tf.enable_v2_behavior()
import tensorflow_probability as tfp
tfd = tfp.distributions
mu = [[1, 2],
[-1, -2]]
cov = [[1, 3./5],
[3./5, 2]]
cov = [cov, cov] # for demonstration purpose, use same cov for both batches
mvn = tfd.MultivariateNormalFullCovariance(
loc=mu, covariance_matrix=cov)
print(mvn.batch_shape, mvn.event_shape)
# generate the pdf
X, Y = tf.meshgrid(tf.range(-3, 3, 0.1), tf.range(-3, 3, 0.1))
print(X.shape)
idx = tf.stack([X, Y], axis=-1)[..., tf.newaxis, :]
print(idx.shape)
probs = mvn.prob(idx)
print(probs.shape)
输出:
(2,) (2,) # mvn.batch_shape, mvn.event_shape
(60, 60) # X.shape
(60, 60, 1, 2) # idx.shape == X.shape + (1 "broadcast against batch", 2 "event")
(60, 60, 2) # probs.shape == X.shape + (2 "mvn batch shape")
关于python - 正态分布> 1的多变量正态分布,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/57238774/