我有一个非常基本的线性回归样本。以下实施(不进行正则化)
class Learning:
def assume(self, weights, x):
return np.dot(x, np.transpose(weights))
def cost(self, weights, x, y, lam):
predict = self.assume(weights, x) \
.reshape(len(x), 1)
val = np.sum(np.square(predict - y), axis=0)
assert val is not None
assert val.shape == (1,)
return val[0] / 2 * len(x)
def grad(self, weights, x, y, lam):
predict = self.assume(weights, x)\
.reshape(len(x), 1)
val = np.sum(np.multiply(
x, (predict - y)), axis=0)
assert val is not None
assert val.shape == weights.shape
return val / len(x)
我想使用
scipy.optimize
检查渐变是否有效。learn = Learning()
INPUTS = np.array([[1, 2],
[1, 3],
[1, 6]])
OUTPUTS = np.array([[3], [5], [11]])
WEIGHTS = np.array([1, 1])
t_check_grad = scipy.optimize.check_grad(
learn.cost, learn.grad, WEIGHTS,INPUTS, OUTPUTS, 0)
print(t_check_grad)
# Output will be 73.2241602235811!!!
我从头到尾手动检查了所有计算。这实际上是正确的实现。但是在输出中,我看到了极大的不同!是什么原因?
最佳答案
在成本函数中,您应该返回
val[0] / (2 * len(x))
而不是
val[0] / 2 * len(x)
。那你就会有print(t_check_grad)
# 1.20853633278e-07
关于python - 线性回归梯度,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/52265087/