我最近在虹膜数据集上实现了概率神经网络。我试图使用YellowBrick分类器打印分类报告,但是运行此代码时出现错误。如下。
from neupy import algorithms
model = algorithms.PNN(std=0.1, verbose=True, batch_size = 500)
model.train(X_train, Y_train)
predictions = model.predict(X_test)
from yellowbrick.classifier import ClassificationReport
visualizer = ClassificationReport(model, support=True)
visualizer.fit(X_train, Y_train) # Fit the visualizer and the model
visualizer.score(X_test, Y_test) # Evaluate the model on the test data
visualizer.show()
此代码返回此错误。
YellowbrickTypeError: This estimator is not a classifier; try a regression or clustering score visualizer instead!
当我为其他分类模型尝试相同的分类报告代码时,它起作用了。我不知道。为什么会这样呢?有人可以帮我吗?
最佳答案
Yellowbrick旨在与scikit-learn一起使用,并使用sklearn的类型检查系统来检测模型是否适合特定类别的机器学习问题。如果neupy PNN
模型实现了scikit-learn估计器API(例如fit()
和predict()
)-可以直接使用该模型并通过使用force_model=True
参数绕过类型检查,如下所示:
visualizer = ClassificationReport(model, support=True, force_model=True)
但是,快速浏览neupy documentation后,由于neupy方法被命名为
train
而不是fit
且PNN模型未实现score()
方法也没有支持_
后缀的学习参数。解决方案是创建一个围绕
PNN
模型的轻量级包装,将其作为sklearn估计器公开。在Yellowbrick数据集上进行测试,这似乎可以工作:from sklearn import metrics
from neupy import algorithms
from sklearn.base import BaseEstimator
from yellowbrick.datasets import load_occupancy
from yellowbrick.classifier import ClassificationReport
from sklearn.model_selection import train_test_split
class PNNWrapper(algorithms.PNN, BaseEstimator):
"""
The PNN wrapper implements BaseEstimator and allows the classification
report to score the model and understand the learned classes.
"""
@property
def classes_(self):
return self.classes
def score(self, X_test, y_test):
y_hat = self.predict(X_test)
return metrics.accuracy_score(y_test, y_hat)
# Load the binary classification dataset
X, y = load_occupancy()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create and train the PNN model using the sklearn wrapper
model = PNNWrapper(std=0.1, verbose=True, batch_size=500)
model.train(X_train, y_train)
# Create the classification report
viz = ClassificationReport(
model,
support=True,
classes=["not occupied", "occupied"],
is_fitted=True,
force_model=True,
title="PNN"
)
# Score the report and show it
viz.score(X_test, y_test)
viz.show()
尽管Yellowbrick目前不支持neupy,但如果您有兴趣-可能值得submitting an issue建议将neupy添加到contrib中,类似于在Yellowbrick中实现
statsmodels
的方式。