刚才我开始使用参考文献sparklyr学习sparklyr软件包。
我做了文件中写的。
使用以下代码时
delay <- flights_tbl %>%
group_by(tailnum) %>%
summarise(count = n(), dist = mean(distance), delay = mean(arr_delay)) %>%
filter(count > 20, dist < 2000, !is.na(delay)) %>%
collect
Warning messages:
1: Missing values are always removed in SQL.
Use `AVG(x, na.rm = TRUE)` to silence this warning
2: Missing values are always removed in SQL.
Use `AVG(x, na.rm = TRUE)` to silence this warning
> delay
# A tibble: 2,961 x 4
tailnum count dist delay
<chr> <dbl> <dbl> <dbl>
1 N14228 111 1547 3.71
2 N24211 130 1330 7.70
3 N668DN 49.0 1028 2.62
4 N39463 107 1588 2.16
5 N516JB 288 1249 12.0
6 N829AS 230 228 17.2
7 N3ALAA 63.0 1078 3.59
8 N793JB 283 1529 4.72
9 N657JB 285 1286 5.03
10 N53441 102 1661 0.941
# ... with 2,951 more rows
以类似的方式,我想使用
nycflights13::flights
包对dplyr
数据集应用相同的操作nycflights13::flights %>%
group_by(tailnum) %>%
summarise(count = n(), dist = mean(distance), delay = mean(arr_delay)) %>%
filter(count > 20, dist < 2000, !is.na(delay))
# A tibble: 1,319 x 4
tailnum count dist delay
<chr> <int> <dbl> <dbl>
1 N102UW 48 536 2.94
2 N103US 46 535 - 6.93
3 N105UW 45 525 - 0.267
4 N107US 41 529 - 5.73
5 N108UW 60 534 - 1.25
6 N109UW 48 536 - 2.52
7 N110UW 40 535 2.80
8 N111US 30 536 - 0.467
9 N11206 111 1414 12.7
10 N112US 38 535 - 0.947
# ... with 1,309 more rows
我的问题是为什么我得到不同的结果?
正如文档
dplyr
中提到的那样,是完整的后端操作对于
sparklyr
。 > sessionInfo()
R version 3.4.0 (2017-04-21)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 7 (build 7601) Service Pack 1
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 [2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2 dplyr_0.7.4 sparklyr_0.7.0
loaded via a namespace (and not attached):
[1] DBI_0.7 readr_1.1.1 withr_2.1.1
[4] nycflights13_0.2.2 rprojroot_1.3-2 lattice_0.20-35
[7] foreign_0.8-69 pkgconfig_2.0.1 config_0.2
[10] utf8_1.1.3 compiler_3.4.0 stringr_1.3.0
[13] parallel_3.4.0 xtable_1.8-2 Rcpp_0.12.15
[16] cli_1.0.0 shiny_1.0.5 plyr_1.8.4
[19] httr_1.3.1 tools_3.4.0 openssl_1.0
[22] nlme_3.1-131.1 broom_0.4.3 R6_2.2.2
[25] dbplyr_1.2.1 bindr_0.1 purrr_0.2.4
[28] assertthat_0.2.0 curl_3.1 digest_0.6.15
[31] mime_0.5 stringi_1.1.6 rstudioapi_0.7
[34] reshape2_1.4.3 hms_0.4.1 backports_1.1.2
[37] htmltools_0.3.6 grid_3.4.0 glue_1.2.0
[40] httpuv_1.3.5 rlang_0.2.0 psych_1.7.8
[43] magrittr_1.5 rappdirs_0.3.1 lazyeval_0.2.1
[46] yaml_2.1.16 crayon_1.3.4 tidyr_0.8.0
[49] pillar_1.1.0 base64enc_0.1-3 mnormt_1.5-5
[52] jsonlite_1.5 tibble_1.4.2 Lahman_6.0-0
最佳答案
关键区别在于,在非火花发生器中,我们没有在na.rm = TRUE
中使用mean
,因此,当我们采用NA
时,那些在“距离”或“ arr_delay”中具有mean
的元素将变为NA。在sparklyr
中,NA值已被删除,因此不需要该参数
我们可以检查'distance'和'arr_delay'中的NA
元素
nycflights13::flights %>%
summarise_at(vars(distance, arr_delay), funs(sum(is.na(.))))
# A tibble: 1 x 2
# distance arr_delay
# <int> <int>
#1 0 9430 #### number of NAs
因此,如果我们对此进行了纠正,则输出将相同
res <- nycflights13::flights %>%
group_by(tailnum) %>%
summarise(count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)) %>%
filter(count > 20, dist < 2000, !is.na(delay)) %>%
arrange(tailnum)
res
# A tibble: 2,961 x 4
# tailnum count dist delay
# <chr> <int> <dbl> <dbl>
# 1 N0EGMQ 371 676 9.98
# 2 N10156 153 758 12.7
# 3 N102UW 48 536 2.94
# 4 N103US 46 535 - 6.93
# 5 N104UW 47 535 1.80
# 6 N10575 289 520 20.7
# 7 N105UW 45 525 - 0.267
# 8 N107US 41 529 - 5.73
# 9 N108UW 60 534 - 1.25
#10 N109UW 48 536 - 2.52
# ... with 2,951 more rows
使用
sparklyr
library(sparklyr)
library(dplyr)
library(nycflights13)
sc <- spark_connect(master = "local")
flights_tbl <- copy_to(sc, nycflights13::flights, "flights")
delay <- flights_tbl %>%
group_by(tailnum) %>%
summarise(count = n(), dist = mean(distance), delay = mean(arr_delay)) %>%
filter(count > 20, dist < 2000, !is.na(delay)) %>%
arrange(tailnum) %>%
collect
delay
# A tibble: 2,961 x 4
# tailnum count dist delay
# <chr> <dbl> <dbl> <dbl>
# 1 N0EGMQ 371 676 9.98
# 2 N10156 153 758 12.7
# 3 N102UW 48.0 536 2.94
# 4 N103US 46.0 535 - 6.93
# 5 N104UW 47.0 535 1.80
# 6 N10575 289 520 20.7
# 7 N105UW 45.0 525 - 0.267
# 8 N107US 41.0 529 - 5.73
# 9 N108UW 60.0 534 - 1.25
#10 N109UW 48.0 536 - 2.52
# ... with 2,951 more rows
关于r - 使用Sparklyr和Dplyr时获得不同的结果,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48921171/