嘿,运行用于Alexnet功能提取的代码时出现错误。我使用这个github link创建alexnet.pb
文件。我使用Tensorboard进行了检查,该图运行良好。
我想使用此模型从fc7/relu
中提取特征并将其提供给另一个模型。我使用以下方法创建图形:
data = 0
model_dir = 'model'
images_dir = 'images_alexnet/train/' + str(data) + '/'
list_images = [images_dir+f for f in os.listdir(images_dir) if re.search('jpeg|JPEG', f)]
list_images.sort()
def create_graph():
with gfile.FastGFile(os.path.join(model_dir, 'alexnet.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
create_graph()
然后输入
input
并使用以下命令提取fc7/relu
层:def extract_features(image_paths, verbose=False):
feature_dimension = 4096
features = np.empty((len(image_paths), feature_dimension))
with tf.Session() as sess:
flattened_tensor = sess.graph.get_tensor_by_name('fc7/relu:0')
for i, image_path in enumerate(image_paths):
if verbose:
print('Processing %s...' % (image_path))
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image)
image_data = gfile.FastGFile(image_path, 'rb').read()
feature = sess.run(flattened_tensor, {'input:0': image_data})
features[i, :] = np.squeeze(feature)
return features
但是我得到了这个错误:
ValueError: invalid literal for int() with base 10: b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00C\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07\x07\t\t\x08\n\x0c\x14\r\x0c\x0b\x0b\x0c\x19\x12\x13\x0f\x14\x1d\x1a\x1f\x1e\
喂图时似乎做错了。我使用Tensorboard看到该图,并且占位符
dtype
是uint8
。我该如何解决?完整错误:
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 710, in runfile
execfile(filename, namespace)
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 101, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "C:/Users/Hermon Jay/Documents/Python/diabetic_retinopathy_temp6_transfer_learning/feature_extraction_alexnet.py", line 49, in <module>
features = extract_features(list_images)
File "C:/Users/Hermon Jay/Documents/Python/diabetic_retinopathy_temp6_transfer_learning/feature_extraction_alexnet.py", line 44, in extract_features
feature = sess.run(flattened_tensor, {'input:0': image_data})
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 889, in run
run_metadata_ptr)
File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1089, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\core\numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
ValueError: invalid literal for int() with base 10: b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00\xff\xdb\x00C\x00\x08\x06\x06\x07\x06\x05\x08\x07\x07\x07\t\t\x08\n\x0c\x14\r\x0c\x0b\x0b\x0c\x19\x12\x13\x0f\x14\x1d\x1a\x1f\x1e\
最佳答案
这行:
image_data = gfile.FastGFile(image_path, 'rb').read()
正在读取
image_path
处的文件作为字节数组。但是,input
占位符期望的是类型为uint8
的三维数组。例如,从您提供的链接10 AlexNet Transfer Learning中查看下一个教程之一。函数get_batch
使用附加图和tf.image.decode_jpeg
之类的操作来生成批处理;然后将该图的结果作为主网络图的输入。例如,您可能会有类似的内容(如果所有图像都适合存储在内存中,否则您必须像本教程中那样对它们进行批处理):
def read_images(image_paths):
with tf.Graph().as_default(), tf.Session() as sess:
file_name = tf.placeholder(tf.string)
jpeg_data = tf.read_file(jpeg_name)
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=3)
images = []
for path in image_paths:
images.append(sess.run(decoded_image, feed_dict={file_name: path}))
return images
def extract_features(image_paths):
images = read_images(image_paths)
with tf.Session() as sess:
flattened_tensor = sess.graph.get_tensor_by_name('fc7/relu:0')
return sess.run(flattened_tensor, {'input:0': images})