我在scikit-learn中阅读了this thread有关SVC()LinearSVC()的区别。

现在我有了一个二进制分类问题的数据集(对于这样的问题,两个函数之间的一对一/一对一策略差异可以忽略。)

我想尝试在这两个函数给我相同结果的参数下使用。首先,我们当然应该将kernel='linear'设置为SVC()
但是,我无法从两个函数中获得相同的结果。我无法从文档中找到答案,有人可以帮助我找到我正在寻找的等效参数集吗?

更新:
我从scikit-learn网站的示例中修改了以下代码,显然它们并不相同:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features. We could
                      # avoid this ugly slicing by using a two-dim dataset
y = iris.target

for i in range(len(y)):
    if (y[i]==2):
        y[i] = 1

h = .02  # step size in the mesh

# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0  # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=C).fit(X, y)
lin_svc = svm.LinearSVC(C=C, dual = True, loss = 'hinge').fit(X, y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))

# title for the plots
titles = ['SVC with linear kernel',
          'LinearSVC (linear kernel)']

for i, clf in enumerate((svc, lin_svc)):
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    plt.subplot(1, 2, i + 1)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)

    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.title(titles[i])

plt.show()


结果:
Output Figure from previous code

最佳答案

从数学上讲,您需要设置:

SVC(kernel='linear', **kwargs) # by default it uses RBF kernel




LinearSVC(loss='hinge', **kwargs) # by default it uses squared hinge loss


另一个无法轻易解决的元素是在intercept_scaling中增加LinearSVC,因为在此实现中偏差是有规律的(在SVC中不正确,在SVM中也不应该正确-因此这不是SVM)-因此,它们永远不会完全相等(除非您的问题的偏倚= 0),因为它们假设两个不同的模型


SVC:1/2||w||^2 + C SUM xi_i
LinearSVC:1/2||[w b]||^2 + C SUM xi_i


我个人认为LinearSVC是sklearn developmentesr的错误之一-此类根本不是线性SVM。

增加截距缩放后(至10.0

machine-learning - scikit-learn中的SVC和LinearSVC在什么参数下等效?-LMLPHP

但是,如果您将其放大太多,它也会失败,因为现在容忍度和迭代次数至关重要。

综上所述:LinearSVC不是线性SVM,如果不需要,请不要使用它。

08-24 14:18