我是否需要在测试时按张量流缩放权重,即测试时的权重* keep_prob还是张量流本身?如果是这样,那怎么办?
在训练中,我的keep_prob为0.5。并在测试时间1。
尽管网络进行了规范化,但准确性却不如规范化之前。
 P.S我正在对CIFAR10进行分类

n_nodes_h1=1000
n_nodes_h2=1000
n_nodes_h3=400
n_nodes_h4=100

classes=10
x=tf.placeholder('float',[None,3073])
y=tf.placeholder('float')
keep_prob=tf.placeholder('tf.float32')

batch_size=100

def neural_net(data):
    hidden_layer1=    {'weight':tf.Variable(tf.random_normal([3073,n_nodes_h1])),
              'biases':tf.Variable(tf.random_normal([n_nodes_h1]))}

    hidden_layer2={'weight':tf.Variable(tf.random_normal([n_nodes_h1,n_nodes_h2])),
              'biases':tf.Variable(tf.random_normal([n_nodes_h2]))}



    out_layer={'weight':tf.Variable(tf.random_normal([n_nodes_h2,classes])),
              'biases':tf.Variable(tf.random_normal([classes]))}


    l1= tf.add(tf.matmul(data,hidden_layer1['weight']),     hidden_layer1['biases'])
    l1=tf.nn.relu(l1)

    #************DROPOUT*******************
    l1=tf.nn.dropout(l1,keep_prob)


    l2= tf.add(tf.matmul(l1,hidden_layer2['weight']), hidden_layer2['biases'])
    l2=tf.nn.relu(l2)



    out=  tf.matmul(l2,out_layer['weight'])+ out_layer['biases']


    return out


这是网络

iterations=20
Train_loss=[]
Test_loss=[]

def train_nn(x):
    prediction=neural_net(x)


    cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
    optimizer=tf.train.AdamOptimizer().minimize(cost)

    epochs=iterations

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for epoch in range (epochs):
            e_loss=0

            i=0
            for _ in range(int(X_train.shape[0]/batch_size)):
                e_x=X_train[i:i+batch_size]
                e_y=y_hot_train[i:i+batch_size]
                i+=batch_size

                _,c=sess.run([optimizer,cost],feed_dict={x:e_x,y:e_y,  keep_prob:0.5})


                e_loss+=c


        print "Epoch: ",epoch," Train loss= ",e_loss
        Train_loss.append(e_loss)



    correct=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))

    accuracy=tf.reduce_mean(tf.cast(correct,'float'))
    print "Accuracy on test: " ,accuracy.eval({x:X_test,y:y_hot_test  , keep_prob:1.})
    print "Accuracy on train:"   ,accuracy.eval({x:X_train[0:2600],y:y_hot_train[0:2600],  keep_prob=1.})
train_nn(x)


我需要类似的东西吗

hidden_layer1['weight']*=keep_prob
#testing time

最佳答案

Tensorflow自己做:


  概率为keep_prob,输出按1 /比例放大的输入元素
  keep_prob,否则输出0。缩放比例应符合预期
  总和不变。


(来自this page

08-24 13:53