我使用hyperopt搜索SVM分类器的最佳参数,但Hyperopt表示最佳“内核”为“ 0”。 {'kernel':'0'}显然不合适。

有人知道这是我的错还是一袋hyperopt引起的?

代码如下。

from hyperopt import fmin, tpe, hp, rand
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn import svm
from sklearn.cross_validation import StratifiedKFold

parameter_space_svc = {
   'C':hp.loguniform("C", np.log(1), np.log(100)),
   'kernel':hp.choice('kernel',['rbf','poly']),
   'gamma': hp.loguniform("gamma", np.log(0.001), np.log(0.1)),
}

from sklearn import datasets
iris = datasets.load_digits()

train_data = iris.data
train_target = iris.target

count = 0

def function(args):
  print(args)
  score_avg = 0
  skf = StratifiedKFold(train_target, n_folds=3, shuffle=True, random_state=1)
  for train_idx, test_idx in skf:
    train_X = iris.data[train_idx]
    train_y = iris.target[train_idx]
    test_X = iris.data[test_idx]
    test_y = iris.target[test_idx]
    clf = svm.SVC(**args)
    clf.fit(train_X,train_y)
    prediction = clf.predict(test_X)
    score = accuracy_score(test_y, prediction)
    score_avg += score

  score_avg /= len(skf)
  global count
  count = count + 1
  print("round %s" % str(count),score_avg)
  return -score_avg

best = fmin(function, parameter_space_svc, algo=tpe.suggest, max_evals=100)
print("best estimate parameters",best)


输出如下。

best estimate parameters {'C': 13.271912841932233, 'gamma': 0.0017394328334592358, 'kernel': 0}

最佳答案

首先,您正在使用sklearn.cross_validation,该版本已从0.18版本开始弃用。因此,请将其更新为sklearn.model_selection

现在到主要问题,来自bestfmin始终返回使用hp.choice定义的参数的索引。

因此,在您的情况下,'kernel':0表示选择第一个值('rbf')作为内核的最佳值。

请参阅此问题,以确认这一点:


https://github.com/hyperopt/hyperopt/issues/216


要从best获取原始值,请使用space_eval()函数,如下所示:

from hyperopt import space_eval
space_eval(parameter_space_svc, best)

Output:
{'C': 13.271912841932233, 'gamma': 0.0017394328334592358, 'kernel': 'rbf'}

08-25 08:14