我使用hyperopt搜索SVM分类器的最佳参数,但Hyperopt表示最佳“内核”为“ 0”。 {'kernel':'0'}显然不合适。
有人知道这是我的错还是一袋hyperopt引起的?
代码如下。
from hyperopt import fmin, tpe, hp, rand
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn import svm
from sklearn.cross_validation import StratifiedKFold
parameter_space_svc = {
'C':hp.loguniform("C", np.log(1), np.log(100)),
'kernel':hp.choice('kernel',['rbf','poly']),
'gamma': hp.loguniform("gamma", np.log(0.001), np.log(0.1)),
}
from sklearn import datasets
iris = datasets.load_digits()
train_data = iris.data
train_target = iris.target
count = 0
def function(args):
print(args)
score_avg = 0
skf = StratifiedKFold(train_target, n_folds=3, shuffle=True, random_state=1)
for train_idx, test_idx in skf:
train_X = iris.data[train_idx]
train_y = iris.target[train_idx]
test_X = iris.data[test_idx]
test_y = iris.target[test_idx]
clf = svm.SVC(**args)
clf.fit(train_X,train_y)
prediction = clf.predict(test_X)
score = accuracy_score(test_y, prediction)
score_avg += score
score_avg /= len(skf)
global count
count = count + 1
print("round %s" % str(count),score_avg)
return -score_avg
best = fmin(function, parameter_space_svc, algo=tpe.suggest, max_evals=100)
print("best estimate parameters",best)
输出如下。
best estimate parameters {'C': 13.271912841932233, 'gamma': 0.0017394328334592358, 'kernel': 0}
最佳答案
首先,您正在使用sklearn.cross_validation
,该版本已从0.18版本开始弃用。因此,请将其更新为sklearn.model_selection
。
现在到主要问题,来自best
的fmin
始终返回使用hp.choice
定义的参数的索引。
因此,在您的情况下,'kernel':0
表示选择第一个值('rbf'
)作为内核的最佳值。
请参阅此问题,以确认这一点:
https://github.com/hyperopt/hyperopt/issues/216
要从best
获取原始值,请使用space_eval()
函数,如下所示:
from hyperopt import space_eval
space_eval(parameter_space_svc, best)
Output:
{'C': 13.271912841932233, 'gamma': 0.0017394328334592358, 'kernel': 'rbf'}