我正在Keras模型上使用sklearn执行超参数调整优化(hyperopt)任务。我正在尝试使用Sklearn交叉验证来优化KerasClassifiers,以下代码如下:
def create_model():
model = Sequential()
model.add(
Dense(output_dim=params['units1'],
input_dim=features_.shape[1],
kernel_initializer="glorot_uniform"))
model.add(Activation(params['activation']))
model.add(Dropout(params['dropout1']))
model.add(BatchNormalization())
...
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
现在我要做的是使用以下方式将Hyperopt参数传递给KerasClassifier
def objective(params, n_folds=N_FOLDS):
"""Objective function for Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
clf = KerasClassifier(build_fn=create_model,**params)
start = timer()
# Perform n_folds cross validation
cv_results = cross_val_score(clf,
features_,
labels,
cv=5
).mean()
run_time = timer() - start
# Loss must be minimized
loss = -cv_results
# Dictionary with information for evaluation
return {
'loss': loss,
'params': params,
'iteration': ITERATION,
'train_time': run_time,
'status': STATUS_OK
}
我将搜索空间定义为:
space = {'units1': hp.choice('units1', [64, 128, 256, 512]),
'units2': hp.choice('units2', [64, 128, 256, 512]),
'dropout1': hp.choice('dropout1', [0.25, 0.5, 0.75]),
'dropout2': hp.choice('dropout2', [0.25, 0.5, 0.75]),
'batch_size': hp.choice('batch_size', [10, 20, 40, 60, 80, 100]),
'nb_epochs': hp.choice('nb_epochs', [10, 50, 100]),
'optimizer': opt_search_space,
'activation': 'relu' }
运行优化
best = fmin(fn = objective, space = space, algo = tpe.suggest,
max_evals = MAX_EVALS, trials = bayes_trials, rstate = np.random.RandomState(50))
但是它无法给出此错误:
ValueError:激活不是合法参数
什么是正确的方法?
最佳答案
将超级参数作为create_model
函数的输入参数。然后,您可以输入params
字典。还要在搜索空间中将键nb_epochs
更改为epochs
。详细了解其他有效参数here。
请尝试以下简化示例。
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from tensorflow.keras import Sequential
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dense, Dropout
import time
def timer():
now = time.localtime(time.time())
return now[5]
X, y = make_classification(n_samples=1000, n_classes=2,
n_informative=4, weights=[0.7, 0.3],
random_state=0)
定义
keras
模型:def create_model(units1, activation, dropout):
model = Sequential()
model.add(Dense(units1,
input_dim=X.shape[1],
kernel_initializer="glorot_uniform",
activation=activation))
model.add(Dropout(dropout))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def objective(params, n_folds=2):
"""Objective function for Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
clf = KerasClassifier(build_fn=create_model,**params)
start = timer()
# Perform n_folds cross validation
cv_results = cross_val_score(clf, X, y,
cv=5,
).mean()
run_time = timer() - start
# Loss must be minimized
loss = -cv_results
# Dictionary with information for evaluation
return {
'loss': loss,
'params': params,
'iteration': ITERATION,
'train_time': run_time,
'status': STATUS_OK
}
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
space = {'units1': hp.choice('units1', [12, 64]),
'dropout': hp.choice('dropout1', [0.25, 0.5]),
'batch_size': hp.choice('batch_size', [10, 20]),
'epochs': hp.choice('nb_epochs', [2, 3]),
'activation': 'relu'
}
global ITERATION
ITERATION = 0
bayes_trials = Trials()
best = fmin(fn = objective, space = space, algo = tpe.suggest,
max_evals = 5, trials = bayes_trials, rstate = np.random.RandomState(50))