我正在尝试为sklearn中的随机森林回归模型实现R的特征重要性评分方法;根据R的文档:


  第一项指标是通过排列OOB数据计算得出的:对于每棵树,
  记录数据袋外部分的预测误差
  (分类错误率,MSE回归)。然后一样
  在排列每个预测变量之后完成。和...之间的不同
  然后将这两者在所有树上取平均值,并通过
  标准差的差异。如果标准偏差
  变量的差等于0,则除法未完成
  (但在这种情况下,平均值几乎总是等于0)。


因此,如果我理解正确,则需要能够为每棵树中的OOB样本置换每个预测变量(特征)。

我了解我可以使用这样的方法访问经过训练的森林中的每棵树

numberTrees = 100
clf = RandomForestRegressor(n_estimators=numberTrees)
clf.fit(X,Y)
for tree in clf.estimators_:
    do something


无论如何,有没有获取每棵树都是OOB的样本列表?也许我可以通过每棵树的random_state来导出OOB样本列表?

最佳答案

尽管R使用OOB样本,但我发现通过使用所有训练样本,我在scikit中得到了相似的结果。我正在执行以下操作:

# permute training data and score against its own model
epoch = 3
seeds = range(epoch)


scores = defaultdict(list) # {feature: change in R^2}

# repeat process several times and then average and then average the score for each feature
for j in xrange(epoch):
    clf = RandomForestRegressor(n_jobs = -1, n_estimators = trees, random_state = seeds[j],
                               max_features = num_features, min_samples_leaf = leaf)

    clf = clf.fit(X_train, y_train)
    acc = clf.score(X_train, y_train)

    print 'Epoch', j
    # for each feature, permute its values and check the resulting score
    for i, col in enumerate(X_train.columns):
        if i % 200 == 0: print "- feature %s of %s permuted" %(i, X_train.shape[1])
        X_train_copy = X_train.copy()
        X_train_copy[col] = np.random.permutation(X_train[col])
        shuff_acc = clf.score(X_train_copy, y_train)
        scores[col].append((acc-shuff_acc)/acc)

# get mean across epochs
scores_mean = {k: np.mean(v) for k, v in scores.iteritems()}

# sort scores (best first)
scores_sorted = pd.DataFrame.from_dict(scores_mean, orient='index').sort(0, ascending = False)

10-08 15:51