我正在尝试用反向传播实现多层感知器,但我仍然不能教他异或,我也经常会得到数学范围错误。我在书籍和谷歌上查找学习规则和错误反向传播方法的信息,但我仍然不知道我的错误在哪里

def logsig(net):
    return 1/(1+math.exp(-net))

def perceptron(coef = 0.5, iterations = 10000):
    inputs = [[0,0],[0,1],[1,0],[1,1]]
    desiredOuts = [0,1,1,0]
    bias = -1
    [input.append(bias) for input in inputs]
    weights_h1 = [random.random() for e in range(len(inputs[0]))]
    weights_h2 = [random.random() for e in range(len(inputs[0]))]
    weights_out = [random.random() for e in range(3)]
    for itteration in range(iterations):
        out = []
        for input, desiredOut in zip(inputs, desiredOuts):
              #1st hiden neuron
            net_h1 = sum(x * w for x, w in zip(input, weights_h1))
            aktivation_h1 = logsig(net_h1)
              #2st hiden neuron
            net_h2 = sum(x * w for x, w in zip(input, weights_h2))
            aktivation_h2 = logsig(net_h2)
              #output neuron
            input_out = [aktivation_h1, aktivation_h2, bias]
            net_out = sum(x * w for x, w in zip(input_out, weights_out))
            aktivation_out = logsig(net_out)
              #error propagation
            error_out = (desiredOut - aktivation_out) * aktivation_out * (1-    aktivation_out)
            error_h1 = aktivation_h1 * (1-aktivation_h1) * weights_out[0] * error_out
            error_h2 = aktivation_h2 * (1-aktivation_h2) * weights_out[1] * error_out
              #learning
            weights_out = [w + x * coef * error_out for w, x in zip(weights_out, input_out)]
            weights_h1 = [w + x * coef * error_out for w, x in zip(weights_h1, input)]
            weights_h2 = [w + x * coef * error_out for w, x in zip(weights_h2, input)]
            out.append(aktivation_out)
    formatedOutput = ["%.2f" % e for e in out]
    return formatedOutput

最佳答案

我唯一注意到的是你用weights_h1而不是weights_h2error_out来更新error_h1error_h2。换句话说:

weights_h1 = [w + x * coef * error_h1 for w, x in zip(weights_h1, input)]
weights_h2 = [w + x * coef * error_h2 for w, x in zip(weights_h2, input)]

10-07 15:30