我正在使用来自scikit-learn的DecisionTreeClassifier对一些数据进行分类。我还使用其他算法,为了进行比较,我使用了精确调用指标下的面积。问题是DecisionTreeClassifier的AUPRC的形状是正方形,而不是您期望该度量标准的通常形状。
这是我如何为DecisionTreeClassifier计算AUPRC。我在计算时遇到了一些麻烦,因为DecisionTreeClassifer不像其他分类器(如LogisticRegression)一样没有decision_function()
这些是我为SVM的AUPRC,Logistic回归和DecisionTreeClassifier获得的结果
这是我如何计算DecisionTreeClassifier的AUPRC
def execute(X_train, y_train, X_test, y_test):
tree = DecisionTreeClassifier(class_weight='balanced')
tree_y_score = tree.fit(X_train, y_train).predict(X_test)
tree_ap_score = average_precision_score(y_test, tree_y_score)
precision, recall, _ = precision_recall_curve(y_test, tree_y_score)
values = {'ap_score': tree_ap_score, 'precision': precision, 'recall': recall}
return values
这是我如何计算SVM的AUPRC:
def execute(X_train, y_train, X_test, y_test):
svm = SVC(class_weight='balanced')
svm.fit(X_train, y_train.values.ravel())
svm_y_score = svm.decision_function(X_test)
svm_ap_score = average_precision_score(y_test, svm_y_score)
precision, recall, _ = precision_recall_curve(y_test, svm_y_score)
values = {'ap_score': svm_ap_score, 'precision': precision, 'recall': recall}
return values
这是我如何计算LogisticRegression的AUPRC:
def execute(X_train, y_train, X_test, y_test):
lr = LogisticRegression(class_weight='balanced')
lr.fit(X_train, y_train.values.ravel())
lr_y_score = lr.decision_function(X_test)
lr_ap_score = average_precision_score(y_test, lr_y_score)
precision, recall, _ = precision_recall_curve(y_test, lr_y_score)
values = {'ap_score': lr_ap_score, 'precision': precision, 'recall': recall}
return values
然后,我将它们称为方法,并绘制如下结果:
import LogReg_AP_Harness as lrApTest
import SVM_AP_Harness as svmApTest
import DecTree_AP_Harness as dtApTest
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
import matplotlib.pyplot as plt
def do_work(df):
X = df.ix[:, df.columns != 'Class']
y = df.ix[:, df.columns == 'Class']
y_binarized = label_binarize(y, classes=[0, 1])
n_classes = y_binarized.shape[1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=0)
_, _, y_train_binarized, y_test_binarized = train_test_split(X, y_binarized, test_size=.3, random_state=0)
print('Executing Logistic Regression')
lr_values = lrApTest.execute(X_train, y_train, X_test, y_test)
print('Executing Decision Tree')
dt_values = dtApTest.execute(X_train, y_train_binarized, X_test, y_test_binarized)
print('Executing SVM')
svm_values = svmApTest.execute(X_train, y_train, X_test, y_test)
plot_aupr_curves(lr_values, svm_values, dt_values)
def plot_aupr_curves(lr_values, svm_values, dt_values):
lr_ap_score = lr_values['ap_score']
lr_precision = lr_values['precision']
lr_recall = lr_values['recall']
svm_ap_score = svm_values['ap_score']
svm_precision = svm_values['precision']
svm_recall = svm_values['recall']
dt_ap_score = dt_values['ap_score']
dt_precision = dt_values['precision']
dt_recall = dt_values['recall']
plt.step(svm_recall, svm_precision, color='g', alpha=0.2,where='post')
plt.fill_between(svm_recall, svm_precision, step='post', alpha=0.2, color='g')
plt.step(lr_recall, lr_precision, color='b', alpha=0.2, where='post')
plt.fill_between(lr_recall, lr_precision, step='post', alpha=0.2, color='b')
plt.step(dt_recall, dt_precision, color='r', alpha=0.2, where='post')
plt.fill_between(dt_recall, dt_precision, step='post', alpha=0.2, color='r')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('SVM (Green): Precision-Recall curve: AP={0:0.2f}'.format(svm_ap_score) + '\n' +
'Logistic Regression (Blue): Precision-Recall curve: AP={0:0.2f}'.format(lr_ap_score) + '\n' +
'Decision Tree (Red): Precision-Recall curve: AP={0:0.2f}'.format(dt_ap_score))
plt.show()
在
do_work()
方法中,我必须对y
进行二值化处理,因为DecisionTreeClassifier没有descision_function()
。我有here的方法。这是情节:
我想这可以归结为我不正确地为DecisionTreeClassifier计算AUPRC。
最佳答案
对于DecisionTreeClassifier
,将predict
替换为pred_proba
;后者的作用与decision_function
相同。
关于python - DecisionTreeClassifier的精确调用曲线下的面积是一个正方形,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/49632828/