我正在使用以下软件包版本

# devtools::install_github("hadley/dplyr")
> packageVersion("dplyr")
[1] ‘0.5.0.9001’

带有以下标题:
library(dplyr)
df  <- structure(list(gene_symbol = structure(1:6, .Label = c("0610005C13Rik",
"0610007P14Rik", "0610009B22Rik", "0610009L18Rik", "0610009O20Rik",
"0610010B08Rik"), class = "factor"), fold_change = c(1.54037,
1.10976, 0.785, 0.79852, 0.91615, 0.87931), pvalue = c(0.5312,
0.00033, 0, 0.00011, 0.00387, 0.01455), ctr.mean_exp = c(0.00583,
59.67286, 83.2847, 6.88321, 14.67696, 1.10363), tre.mean_exp = c(0.00899,
66.22232, 65.37819, 5.49638, 13.4463, 0.97043), ctr.cv = c(5.49291,
0.20263, 0.17445, 0.46288, 0.2543, 0.39564), tre.cv = c(6.06505,
0.28827, 0.33958, 0.53295, 0.26679, 0.52364)), .Names = c("gene_symbol",
"fold_change", "pvalue", "ctr.mean_exp", "tre.mean_exp", "ctr.cv",
"tre.cv"), row.names = c(NA, -6L), class = c("tbl_df", "tbl",
"data.frame"))

看起来像这样:
> df
# A tibble: 6 × 7
    gene_symbol fold_change  pvalue ctr.mean_exp tre.mean_exp  ctr.cv  tre.cv
         <fctr>       <dbl>   <dbl>        <dbl>        <dbl>   <dbl>   <dbl>
1 0610005C13Rik     1.54037 0.53120      0.00583      0.00899 5.49291 6.06505
2 0610007P14Rik     1.10976 0.00033     59.67286     66.22232 0.20263 0.28827
3 0610009B22Rik     0.78500 0.00000     83.28470     65.37819 0.17445 0.33958
4 0610009L18Rik     0.79852 0.00011      6.88321      5.49638 0.46288 0.53295
5 0610009O20Rik     0.91615 0.00387     14.67696     13.44630 0.25430 0.26679
6 0610010B08Rik     0.87931 0.01455      1.10363      0.97043 0.39564 0.52364

我想将浮点数(第二列起)四舍五入为3位数字。用dplyr::mutate_all()可以做什么

我尝试了这个:
cols <- names(df)[2:7]
# df <- df %>% mutate_each_(funs(round(.,3)), cols)
# Warning message:
#'mutate_each_' is deprecated.
# Use 'mutate_all' instead.
# See help("Deprecated")

df <- df %>% mutate_all(funs(round(.,3)), cols)

但是出现以下错误:
Error in mutate_impl(.data, dots) :
  3 arguments passed to 'round'which requires 1 or 2 arguments

最佳答案

dplyr 1.0.0的更新across()函数替换了dplyr动词的_if / _all / _at / _each变体。 https://dplyr.tidyverse.org/dev/articles/colwise.html#how-do-you-convert-existing-code更新虽然更加“罗word”,但使tidyverse语言和代码更加一致和通用。
这是如何舍入指定的列:df %>% mutate(across(2:7, round, 3))#2-7列按位置df %>% mutate(across(cols, round, 3))#变量cols指定的列
四舍五入所有数字列:df %>% mutate(across(where(is.numeric), round, 3))四舍五入所有列:(在这种情况下将不起作用,因为gene_symbol不是数字)df %>% mutate(across(everything(), round, 3))where(is.numeric)的参数中包含across的位置,可以放入其他列规范,例如-1或-gene_symbol以排除列1。有关更多选项,请参阅tidyselect

由于某些列不是数字列,因此您可以使用mutate_if并具有将列四舍五入到iff的附加好处(当且仅当它是数字时):df %>% mutate_if(is.numeric, round, 3)编辑:根据@JdP建议简化命令(无需funs)

08-19 21:08