我正在尝试使用sklearn在NLP中的管道中添加词干。

from nltk.stem.snowball import FrenchStemmer

stop = stopwords.words('french')
stemmer = FrenchStemmer()


class StemmedCountVectorizer(CountVectorizer):
    def __init__(self, stemmer):
        super(StemmedCountVectorizer, self).__init__()
        self.stemmer = stemmer

    def build_analyzer(self):
        analyzer = super(StemmedCountVectorizer, self).build_analyzer()
        return lambda doc:(self.stemmer.stem(w) for w in analyzer(doc))

stem_vectorizer = StemmedCountVectorizer(stemmer)
text_clf = Pipeline([('vect', stem_vectorizer), ('tfidf', TfidfTransformer()), ('clf', SVC(kernel='linear', C=1)) ])

当将此管道与sklearn的CountVectorizer一起使用时,它可以工作。而且,如果我手动创建类似的功能,它也将起作用。
vectorizer = StemmedCountVectorizer(stemmer)
vectorizer.fit_transform(X)
tfidf_transformer = TfidfTransformer()
X_tfidf = tfidf_transformer.fit_transform(X_counts)

编辑:

如果我在IPython Notebook上尝试此管道,它将显示[*],并且什么也没有发生。当我查看我的终端时,它显示此错误:
Process PoolWorker-12:
Traceback (most recent call last):
  File "C:\Anaconda2\lib\multiprocessing\process.py", line 258, in _bootstrap
    self.run()
  File "C:\Anaconda2\lib\multiprocessing\process.py", line 114, in run
    self._target(*self._args, **self._kwargs)
  File "C:\Anaconda2\lib\multiprocessing\pool.py", line 102, in worker
    task = get()
  File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\pool.py", line 360, in get
    return recv()
AttributeError: 'module' object has no attribute 'StemmedCountVectorizer'



这是完整的例子
from sklearn.pipeline import Pipeline
from sklearn import grid_search
from sklearn.svm import SVC
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from nltk.stem.snowball import FrenchStemmer

stemmer = FrenchStemmer()
analyzer = CountVectorizer().build_analyzer()

def stemming(doc):
    return (stemmer.stem(w) for w in analyzer(doc))

X = ['le chat est beau', 'le ciel est nuageux', 'les gens sont gentils', 'Paris est magique', 'Marseille est tragique', 'JCVD est fou']
Y = [1,0,1,1,0,0]

text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SVC())])
parameters = { 'vect__analyzer': ['word', stemming]}

gs_clf = grid_search.GridSearchCV(text_clf, parameters, n_jobs=-1)
gs_clf.fit(X, Y)

如果从参数中删除词干,它将起作用,否则将不起作用。

更新:

问题似乎出在并行化过程中,因为删除 n_jobs = -1 时问题消失了。

最佳答案

您可以将可调用的analyzer传递给CountVectorizer构造函数以提供自定义分析器。这似乎为我工作。

from sklearn.feature_extraction.text import CountVectorizer
from nltk.stem.snowball import FrenchStemmer

stemmer = FrenchStemmer()
analyzer = CountVectorizer().build_analyzer()

def stemmed_words(doc):
    return (stemmer.stem(w) for w in analyzer(doc))

stem_vectorizer = CountVectorizer(analyzer=stemmed_words)
print(stem_vectorizer.fit_transform(['Tu marches dans la rue']))
print(stem_vectorizer.get_feature_names())

打印输出:
  (0, 4)    1
  (0, 2)    1
  (0, 0)    1
  (0, 1)    1
  (0, 3)    1
[u'dan', u'la', u'march', u'ru', u'tu']

关于python - 向CountVectorizer(sklearn)添加词干支持,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/36182502/

10-12 23:55