这是我的数据样本:
kod <- structure(list(ID_WORKES = c(28029571L, 28029571L, 28029571L,
28029571L, 28029571L, 28029571L, 28029571L, 28029571L, 28029571L
), TABL_NOM = c(9716L, 9716L, 9716L, 9716L, 9716L, 9716L, 9716L,
9716L, 9716L), NAME = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Dim", class = "factor"), ID_SP_NAR = c(20L,
20L, 20L, 30L, 30L, 30L, 30L, 30L, 30L), KOD_DOR = c(28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L), KOD_DEPO = c(9167L, 9167L,
9167L, 9167L, 9167L, 9167L, 9167L, 9167L, 9167L), COLUMN_MASH = c(13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L), prop_violations = c(0.00561797752808989,
0.00293255131964809, 0.00495049504950495, 0.00215982721382289,
0.0120481927710843, 0.00561797752808989, 0.00293255131964809,
0.00591715976331361, 0.00495049504950495), mash_score = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA, -9L), class = "data.frame")
W
我要实现的帽子如下:
对于由列
ID_WORKES
,TABL_NOM
,NAME
,KOD_DOR
和KOD_DEPO
组成的每个组,我希望在ID_SP_NAR
中具有唯一的值。例如,这里有六行,其中
ID_SP_NAR == 30
的prop_violations
值不同。在这种情况下,我想对这六行进行汇总,以使
prop_violations
的剩余值等于这六行的平均值。所需的输出如下所示:
ID_WORKES TABL_NOM NAME KOD_DOR KOD_DEPO ID_SP_NAR prop_violations mash_score
1 28029571 9716 Dim 28 9167 20 0.004500341 0
2 28029571 9716 Dim 28 9167 30 0.005604367 0
但是还有另一件事:如果对于prop_violations中ID_SP_NAR的某些重复值,mash_ score的值> 0,则保留mash_score的值> 0的最后一个值
例如。
ID_WORKES TABL_NOM NAME ID_SP_NAR KOD_DOR KOD_DEPO COLUMN_MASH prop_violations mash_score
1 28029571 9716 Dim 30 28 9167 13 0,0056 0
2 28029571 9716 Dim 30 28 9167 13 0,012048193 0
3 28029571 9716 Dim 30 28 9167 13 0,005617978 0
4 28029571 9716 Dim 30 28 9167 13 0,002932551 1
5 28029571 9716 Dim 30 28 9167 13 0,00591716 0
6 28029571 9716 Dim 30 28 9167 13 0,004950495 0
在这种情况下,通过prop_violation将ID_SP_NAR = 30保留为仅值0,002932551,因为mash_score> 0
如何达到这个条件?
最佳答案
使用data.table
的选项:
setDT(kod)
kod[, {
if(any(mash_score)>0) {
i <- which(mash_score>0)[1L]
.(prop_violations=prop_violations[i], mash_score=mash_score[i])
} else
.(prop_violations=mean(prop_violations), mash_score=mash_score[1L])
},
.(ID_WORKES, TABL_NOM, NAME, KOD_DOR, KOD_DEPO, ID_SP_NAR)]
输出:
ID_WORKES TABL_NOM NAME KOD_DOR KOD_DEPO ID_SP_NAR prop_violations mash_score
1: 28029571 9716 Dim 28 9167 20 0.004500341 0
2: 28029571 9716 Dim 28 9167 30 0.002932551 1
数据:
kod <- structure(list(ID_WORKES = c(28029571L, 28029571L, 28029571L,
28029571L, 28029571L, 28029571L, 28029571L, 28029571L, 28029571L
), TABL_NOM = c(9716L, 9716L, 9716L, 9716L, 9716L, 9716L, 9716L,
9716L, 9716L), NAME = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Dim", class = "factor"), ID_SP_NAR = c(20L,
20L, 20L, 30L, 30L, 30L, 30L, 30L, 30L), KOD_DOR = c(28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L), KOD_DEPO = c(9167L, 9167L,
9167L, 9167L, 9167L, 9167L, 9167L, 9167L, 9167L), COLUMN_MASH = c(13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L), prop_violations = c(0.00561797752808989,
0.00293255131964809, 0.00495049504950495, 0.00215982721382289,
0.0120481927710843, 0.00561797752808989, 0.00293255131964809,
0.00591715976331361, 0.00495049504950495), mash_score = c(0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L)), row.names = c(NA, -9L), class = "data.frame")