我有一个float列,它包含NaN
值和float值。如何筛选出那些不以.0
结尾的值?
例如:
Col1
0.7
1.0
1.1
9.0
9.5
NaN
期望结果将是:
Col1
0.7
1.1
9.2
最佳答案
您可以使用boolean indexing
:
#convert to string and compare last value
print ((df.Col1.astype(str).str[-1] != '0') & (df.Col1.notnull()))
0 True
1 False
2 True
3 False
4 True
5 False
Name: Col1, dtype: bool
print (df[(df.Col1.astype(str).str[-1] != '0') & (df.Col1.notnull())])
Col1
0 0.7
2 1.1
4 9.5
另一种比较转换值与
ìnt
的方法,但首先需要fillna
:s = df.Col1.fillna(1)
print (df[s.astype(int) != s])
Col1
0 0.7
2 1.1
4 9.5
时间安排:
#[30000 rows x 1 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
def jez2(df):
s = df.Col1.fillna(1)
return (df[s.astype(int) != s])
In [179]: %timeit (df[(df.Col1.astype(str).str[-1] != '0') & (df.Col1.notnull())])
10 loops, best of 3: 80.2 ms per loop
In [180]: %timeit (jez2(df))
1000 loops, best of 3: 1.16 ms per loop
In [181]: %timeit (df[df.Col1 // 1 != df.Col1].dropna())
100 loops, best of 3: 3.04 ms per loop
In [182]: %timeit (df[df['Col1'].mod(1) > 0].dropna())
100 loops, best of 3: 2.58 ms per loop