# data
set.seed (123)
xvar <- c(rnorm (1000, 50, 30), rnorm (1000, 40, 10), rnorm (1000, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
# density plot for xvar
upperp = 80 # upper cutoff
lowerp = 30 # lower cutoff
x <- myd$xvar
plot(density(x))
dens <- density(x)
x11 <- min(which(dens$x <= lowerp))
x12 <- max(which(dens$x <= lowerp))
x21 <- min(which(dens$x > upperp))
x22 <- max(which(dens$x > upperp))
with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
y = c(0, y[x11:x12], 0), col = "green"))
with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
y = c(0, y[x21:x22], 0), col = "red"))
abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")
# density plot with yvar
upperp = 70 # upper cutoff
lowerp = 30 # lower cutoff
x <- myd$yvar
plot(density(x))
dens <- density(x)
x11 <- min(which(dens$x <= lowerp))
x12 <- max(which(dens$x <= lowerp))
x21 <- min(which(dens$x > upperp))
x22 <- max(which(dens$x > upperp))
with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
y = c(0, y[x11:x12], 0), col = "green"))
with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
y = c(0, y[x21:x22], 0), col = "red"))
abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")
我需要绘制两种密度图,我不确定是否有比以下更好的方法:
ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
scale_fill_gradient(low="blue", high="green") + theme_bw()
我想将所有三种类型合而为一(我不知道我是否可以在ggplot中创建双向绘图),因此对于解决方案是在ggplot中还是在ggplot中或在基础绘图中还是混合绘图都不存在偏好。考虑到R的健壮性,我希望这是可行的项目。我个人更喜欢ggplot2。
注意:此图的下部阴影不正确,在xvar和yvar图中,红色应始终较低,绿色应始终在上部,这与xy密度图中的阴影区域相对应。
编辑:对图形的最终期望(非常感谢塞思和乔恩的回答)
(1)移除空间和轴刻度标签等以使其紧凑
(2)网格对齐,以使中间的图刻度和网格应与侧刻度和标签对齐,并且图的大小看起来相同。
最佳答案
这是将多个图与路线合并的示例:
library(ggplot2)
library(grid)
set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
coord_cartesian(c(0, 150), c(0, 150)) +
opts(legend.position = "none")
p2 <- ggplot(myd, aes(x = xvar)) + stat_density() +
coord_cartesian(c(0, 150))
p3 <- ggplot(myd, aes(x = yvar)) + stat_density() +
coord_flip(c(0, 150))
gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))
gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
1, 3, 1, 3, clip = "off")
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)
请注意,这可用于gglot2 0.9.1,在将来的版本中,您可以更轻松地完成此操作。
最后
您可以通过以下方式做到这一点:
library(ggplot2)
library(grid)
set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
geom_polygon(aes(x, y),
data.frame(x = c(-Inf, -Inf, 30, 30), y = c(-Inf, 30, 30, -Inf)),
alpha = 0.5, colour = NA, fill = "red") +
geom_polygon(aes(x, y),
data.frame(x = c(Inf, Inf, 80, 80), y = c(Inf, 80, 80, Inf)),
alpha = 0.5, colour = NA, fill = "green") +
coord_cartesian(c(0, 120), c(0, 120)) +
opts(legend.position = "none")
xd <- data.frame(density(myd$xvar)[c("x", "y")])
p2 <- ggplot(xd, aes(x, y)) +
geom_area(data = subset(xd, x < 30), fill = "red") +
geom_area(data = subset(xd, x > 80), fill = "green") +
geom_line() +
coord_cartesian(c(0, 120))
yd <- data.frame(density(myd$yvar)[c("x", "y")])
p3 <- ggplot(yd, aes(x, y)) +
geom_area(data = subset(yd, x < 30), fill = "red") +
geom_area(data = subset(yd, x > 80), fill = "green") +
geom_line() +
coord_flip(c(0, 120))
gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))
gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
1, 3, 1, 3, clip = "off")
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)
关于r - r中选定区域的双向密度图与单向密度图的组合,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/11546256/