我有两个像下面这样的关系数据框。
df_doc:
|document_id| name|
+-----------+-----+
| 1| aaa|
| 2| bbb|
df_topic:
| topic_id| name|document_id|
+-----------+-----+-----------+
| 1| xxx| 1|
| 2| yyy| 2|
| 3| zzz| 2|
我想将它们合并到像下面这样的单个嵌套json文件中。
[
{
"document_id": 1,
"name": "aaa",
"topics": [
{
"topic_id": 1,
"name": "xxx"
}
]
},
{
"document_id": 2,
"name": "bbb",
"topics": [
{
"topic_id": 2,
"name": "yyy"
},
{
"topic_id": 3,
"name": "zzz"
}
]
}
]
也就是说,我想做与
pandas.io.json.json_normalize
相反的事情。使用sqlite的答案也可以。
注意:df_doc和df_topic都有“名称”列,它们具有相同的名称但值不同
谢谢。
最佳答案
如果只有2列df_doc
,请先使用map
联接新列title
,然后将groupby
联接到to_dict
和to_json
:
s = df_doc.set_index('document_id')['title']
df_topic['title'] = df_topic['document_id'].map(s)
#filter all columns without values in list
cols = df_topic.columns.difference(['document_id','title'])
j = (df_topic.groupby(['document_id','title'])[cols]
.apply(lambda x: x.to_dict('r'))
.reset_index(name='topics')
.to_json(orient='records'))
print (j)
[{"document_id":1,"title":"aaa","topics":[{"name":"xxx","topic_id":1}]},
{"document_id":2,"title":"bbb","topics":[{"name":"yyy","topic_id":2},
{"name":"zzz","topic_id":3}]}]
如果
df_doc
中的多列使用join
代替map
:df = df_topic.merge(df_doc, on='document_id')
print (df)
topic_id name document_id title
0 1 xxx 1 aaa
1 2 yyy 2 bbb
2 3 zzz 2 bbb
cols = df.columns.difference(['document_id','title'])
j = (df.groupby(['document_id','title'])[cols]
.apply(lambda x: x.to_dict('r'))
.reset_index(name='topics')
.to_json(orient='records'))
编辑:如果可能使用相同的列名称,请添加参数
suffixes
以将_
添加到唯一且最后strip
的列名称:df = df_topic.merge(df_doc, on='document_id', suffixes=('','_'))
print (df)
topic_id name document_id name_
0 1 xxx 1 aaa
1 2 yyy 2 bbb
2 3 zzz 2 bbb
cols = df.columns.difference(['document_id','title'])
j = (df.groupby(['document_id','name_'])[cols]
.apply(lambda x: x.to_dict('r'))
.reset_index(name='topics')
.rename(columns=lambda x: x.rstrip('_'))
.to_json(orient='records'))
print (j)
[{"document_id":1,"name":"aaa","topics":[{"name":"xxx","name_":"aaa","topic_id":1}]},
{"document_id":2,"name":"bbb","topics":[{"name":"yyy","name_":"bbb","topic_id":2},
{"name":"zzz","name_":"bbb","topic_id":3}]}]