scipy.sparse.hstack((1, [2]))
和scipy.sparse.hstack((1, [2]))
效果很好,但scipy.sparse.hstack(([1], [2]))
不好。为什么会这样呢?
这是我的系统上发生的痕迹:
C:\Anaconda>python
Python 2.7.10 |Anaconda 2.3.0 (64-bit)| (default, May 28 2015, 16:44:52) [MSC v.
1500 64 bit (AMD64)] on win32
>>> import scipy.sparse
>>> scipy.sparse.hstack((1, [2]))
<1x2 sparse matrix of type '<type 'numpy.int32'>'
with 2 stored elements in COOrdinate format>
>>> scipy.sparse.hstack((1, 2))
<1x2 sparse matrix of type '<type 'numpy.int32'>'
with 2 stored elements in COOrdinate format>
>>> scipy.sparse.hstack(([1], [2]))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Anaconda\lib\site-packages\scipy\sparse\construct.py", line 456, in h
stack
return bmat([blocks], format=format, dtype=dtype)
File "C:\Anaconda\lib\site-packages\scipy\sparse\construct.py", line 539, in b
mat
raise ValueError('blocks must be 2-D')
ValueError: blocks must be 2-D
>>> scipy.version.full_version
'0.16.0'
>>>
最佳答案
编码细节为:
def hstack(blocks ...):
return bmat([blocks], ...)
def bmat(blocks, ...):
blocks = np.asarray(blocks, dtype='object')
if blocks.ndim != 2:
raise ValueError('blocks must be 2-D')
(continue)
因此,请尝试其他方法(记住额外的
[]
):In [392]: np.asarray([(1,2)],dtype=object)
Out[392]: array([[1, 2]], dtype=object)
In [393]: np.asarray([(1,[2])],dtype=object)
Out[393]: array([[1, [2]]], dtype=object)
In [394]: np.asarray([([1],[2])],dtype=object)
Out[394]:
array([[[1],
[2]]], dtype=object)
In [395]: _.shape
Out[395]: (1, 2, 1)
最后一个案例(您的问题案例)失败了,因为结果是3d。
使用2个稀疏矩阵(预期输入):
In [402]: np.asarray([[a,a]], dtype=object)
Out[402]:
array([[ <1x1 sparse matrix of type '<class 'numpy.int32'>'
with 1 stored elements in COOrdinate format>,
<1x1 sparse matrix of type '<class 'numpy.int32'>'
with 1 stored elements in COOrdinate format>]], dtype=object)
In [403]: _.shape
Out[403]: (1, 2)
hstack
通过将矩阵列表转换为嵌套的(2d)矩阵列表来利用bmat
格式。 bmat
旨在将一种2d稀疏矩阵数组组合为一个较大的数组。跳过首先制作这些稀疏矩阵的步骤可能会,也可能不会。代码和文档没有任何 promise 。关于python - scipy.sparse.hstack(([[1],[2]))-> "ValueError: blocks must be 2-D"。为什么?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/31900567/